Приказ основних података о документу

dc.creatorLazarević, Zorica Ž.
dc.creatorKrižan, Gregor
dc.creatorKrižan, Janez
dc.creatorMilutinović, Aleksandra N.
dc.creatorIvanovski, Valentin N.
dc.creatorMitrić, Miodrag
dc.creatorGilić, Martina
dc.creatorUmićević, Ana
dc.creatorKuryliszyn-Kudelska, Izabela
dc.creatorRomčević, Nebojša Ž.
dc.date.accessioned2020-03-09T13:28:17Z
dc.date.available2020-03-09T13:28:17Z
dc.date.issued2019
dc.identifier.issn0021-8979
dc.identifier.urihttps://vinar.vin.bg.ac.rs/handle/123456789/8501
dc.description.abstractLithium iron phosphate (LiFePO4, LFP) is one of the widely used cathode materials for rechargeable lithium ion batteries. LFP batteries are widely used for electric vehicles and backup power due to their important advantages such as low cost, lifetime, efficiency, and reliability. There are still several technical challenges that need to be addressed: The increase of energy density or further reduction of their final cost. This paper concerned with the characterization of carbon coated LiFePO4 nanopowder cathode materials produced under different conditions by pulse combustion for providing energy to the reactor for the synthesis. The reactor was built according to the principles of the thermoacoustic burner on the basis of the Helmholtz resonator. The investigated nanopowders are synthesized by complete and incomplete combustion and calcined at 700 °C. The obtained samples were characterized by X-ray diffraction, Fourier transform infrared, Raman, and Mössbauer spectroscopy. Observed low-Temperature magnetic phase transitions definitively identified the crystal phases. The morphology of samples was controlled by scanning electron microscopy. The aim of this work is to show that it is possible to achieve a desired crystal phase by pulse combustion in a relatively cheap and fast way. The extremely rapid synthesis of almost pure phase material is possible due to the reduction in size of interacting particles and to an enormous number of collisions between them as a result of strong turbulent flow associated with explosive combustion. © 2019 Author(s).en
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45003/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45018/RS//
dc.rightsrestrictedAccess
dc.sourceJournal of Applied Physics
dc.titleCharacterization of LiFePO4 samples obtained by pulse combustion under various conditions of synthesisen
dc.typearticleen
dc.rights.licenseARR
dcterms.abstractУмићевић, A; Курyлисзyн-Куделска, И; Ромчевић, Н A; Лазаревић, З A; Криаан, Г; Криан, Ј; Милутиновић, A; Ивановски, В Н; Митрић, М; Гилић, М;
dc.rights.holder© 2019 Author(s)
dc.citation.volume126
dc.citation.issue8
dc.citation.spage085109
dc.identifier.wos000483884600022
dc.identifier.doi10.1063/1.5100358
dc.citation.rankM22
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-85071522960


Документи

Thumbnail

Овај документ се појављује у следећим колекцијама

Приказ основних података о документу