Functional characterization of β2-adrenergic and insulin receptor heteromers
Authorized Users Only
2019
Authors
Susec, MajaSenćanski, Milan V.

Glišić, Sanja

Veljković, Nevena V.

Pedersen, Christina
Drinovec, Luka

Stojan, Jurij
Nøhr, Jane
Vrecl, Milka
Article (Published version)

© 2019 Elsevier Ltd.
Metadata
Show full item recordAbstract
This study aimed to functionally characterize β2-adrenergic (β2AR) and insulin receptor (IR) heteromers in regard to β-arrestin 2 (βarr2) recruitment and cAMP signaling and to examine the involvement of the cytoplasmic portion of the IR β chain in heteromerization with β2AR. Evidence for β2AR:IR:βarr2 complex formation and the specificity of the IR:βarr2 interaction was first provided by bioinfomatics analysis. Receptor-heteromer investigation technology (HIT) then provided functional evidence of β2AR:IR heterodimerization by showing isoproterenol-induced but not insulin-induced GFP2-βarr2 recruitment to the β2AR:IR complex; the IR:βarr2 interaction was found to only be constitutive. The constitutive IR:βarr2 BRET signal (BRETconst) was significantly smaller in cells coexpressing IR-RLuc8 and a GFP2-βarr2 1–185 mutant lacking the proposed IR binding domain. β2AR:IR heteromerization also influenced the pharmacological phenotype of β2AR, i.e., its efficacy in recruiting βarr2 and activat...ing cAMP signaling. Evidence suggesting involvement of the cytoplasmic portion of the IR β chain in the interaction with β2AR was provided by BRET2 saturation and HIT assays using an IR 1–1271 stop mutant lacking the IR C-terminal tail region. For the complex consisting of IR 1–1271–RLuc8:β2AR-GFP2, saturation was not reached, most likely reflecting random collisions between IR 1–1271 and β2AR. Furthermore, in the HIT assay, no substantial agonist-induced increase in the BRET2 signal was detected that would be indicative of βarr2 recruitment to the IR 1–1271:β2AR heteromer. Complementary 3D visualization of β2AR:IR provided supporting evidence for stability of the heterotetramer complex and identified amino acid residues involved in β2AR:IR heteromerization. © 2019
Keywords:
beta(2)-adrenergic receptor / Insulin receptor / BRET / Heteromer identification technology / Informational spectrum method / 3D visualizationSource:
Neuropharmacology, 2019, 152, 78-89Funding / projects:
- Basileus program
- Slovenian Research Agency [P4-0053]
- Slovenian Research Agency [P1-0170]
- Application of the EIIP/ISM bioinformatics platform in discovery of novel therapeutic targets and potential therapeutic molecules (RS-173001)
DOI: 10.1016/j.neuropharm.2019.01.025
ISSN: 0028-3908
PubMed: 30707913
WoS: 000474676400010
Scopus: 2-s2.0-85061026379
Collections
Institution/Community
VinčaTY - JOUR AU - Susec, Maja AU - Senćanski, Milan V. AU - Glišić, Sanja AU - Veljković, Nevena V. AU - Pedersen, Christina AU - Drinovec, Luka AU - Stojan, Jurij AU - Nøhr, Jane AU - Vrecl, Milka PY - 2019 UR - https://vinar.vin.bg.ac.rs/handle/123456789/8490 AB - This study aimed to functionally characterize β2-adrenergic (β2AR) and insulin receptor (IR) heteromers in regard to β-arrestin 2 (βarr2) recruitment and cAMP signaling and to examine the involvement of the cytoplasmic portion of the IR β chain in heteromerization with β2AR. Evidence for β2AR:IR:βarr2 complex formation and the specificity of the IR:βarr2 interaction was first provided by bioinfomatics analysis. Receptor-heteromer investigation technology (HIT) then provided functional evidence of β2AR:IR heterodimerization by showing isoproterenol-induced but not insulin-induced GFP2-βarr2 recruitment to the β2AR:IR complex; the IR:βarr2 interaction was found to only be constitutive. The constitutive IR:βarr2 BRET signal (BRETconst) was significantly smaller in cells coexpressing IR-RLuc8 and a GFP2-βarr2 1–185 mutant lacking the proposed IR binding domain. β2AR:IR heteromerization also influenced the pharmacological phenotype of β2AR, i.e., its efficacy in recruiting βarr2 and activating cAMP signaling. Evidence suggesting involvement of the cytoplasmic portion of the IR β chain in the interaction with β2AR was provided by BRET2 saturation and HIT assays using an IR 1–1271 stop mutant lacking the IR C-terminal tail region. For the complex consisting of IR 1–1271–RLuc8:β2AR-GFP2, saturation was not reached, most likely reflecting random collisions between IR 1–1271 and β2AR. Furthermore, in the HIT assay, no substantial agonist-induced increase in the BRET2 signal was detected that would be indicative of βarr2 recruitment to the IR 1–1271:β2AR heteromer. Complementary 3D visualization of β2AR:IR provided supporting evidence for stability of the heterotetramer complex and identified amino acid residues involved in β2AR:IR heteromerization. © 2019 T2 - Neuropharmacology T1 - Functional characterization of β2-adrenergic and insulin receptor heteromers VL - 152 SP - 78 EP - 89 DO - 10.1016/j.neuropharm.2019.01.025 ER -
@article{ author = "Susec, Maja and Senćanski, Milan V. and Glišić, Sanja and Veljković, Nevena V. and Pedersen, Christina and Drinovec, Luka and Stojan, Jurij and Nøhr, Jane and Vrecl, Milka", year = "2019", abstract = "This study aimed to functionally characterize β2-adrenergic (β2AR) and insulin receptor (IR) heteromers in regard to β-arrestin 2 (βarr2) recruitment and cAMP signaling and to examine the involvement of the cytoplasmic portion of the IR β chain in heteromerization with β2AR. Evidence for β2AR:IR:βarr2 complex formation and the specificity of the IR:βarr2 interaction was first provided by bioinfomatics analysis. Receptor-heteromer investigation technology (HIT) then provided functional evidence of β2AR:IR heterodimerization by showing isoproterenol-induced but not insulin-induced GFP2-βarr2 recruitment to the β2AR:IR complex; the IR:βarr2 interaction was found to only be constitutive. The constitutive IR:βarr2 BRET signal (BRETconst) was significantly smaller in cells coexpressing IR-RLuc8 and a GFP2-βarr2 1–185 mutant lacking the proposed IR binding domain. β2AR:IR heteromerization also influenced the pharmacological phenotype of β2AR, i.e., its efficacy in recruiting βarr2 and activating cAMP signaling. Evidence suggesting involvement of the cytoplasmic portion of the IR β chain in the interaction with β2AR was provided by BRET2 saturation and HIT assays using an IR 1–1271 stop mutant lacking the IR C-terminal tail region. For the complex consisting of IR 1–1271–RLuc8:β2AR-GFP2, saturation was not reached, most likely reflecting random collisions between IR 1–1271 and β2AR. Furthermore, in the HIT assay, no substantial agonist-induced increase in the BRET2 signal was detected that would be indicative of βarr2 recruitment to the IR 1–1271:β2AR heteromer. Complementary 3D visualization of β2AR:IR provided supporting evidence for stability of the heterotetramer complex and identified amino acid residues involved in β2AR:IR heteromerization. © 2019", journal = "Neuropharmacology", title = "Functional characterization of β2-adrenergic and insulin receptor heteromers", volume = "152", pages = "78-89", doi = "10.1016/j.neuropharm.2019.01.025" }
Susec, M., Senćanski, M. V., Glišić, S., Veljković, N. V., Pedersen, C., Drinovec, L., Stojan, J., Nøhr, J.,& Vrecl, M.. (2019). Functional characterization of β2-adrenergic and insulin receptor heteromers. in Neuropharmacology, 152, 78-89. https://doi.org/10.1016/j.neuropharm.2019.01.025
Susec M, Senćanski MV, Glišić S, Veljković NV, Pedersen C, Drinovec L, Stojan J, Nøhr J, Vrecl M. Functional characterization of β2-adrenergic and insulin receptor heteromers. in Neuropharmacology. 2019;152:78-89. doi:10.1016/j.neuropharm.2019.01.025 .
Susec, Maja, Senćanski, Milan V., Glišić, Sanja, Veljković, Nevena V., Pedersen, Christina, Drinovec, Luka, Stojan, Jurij, Nøhr, Jane, Vrecl, Milka, "Functional characterization of β2-adrenergic and insulin receptor heteromers" in Neuropharmacology, 152 (2019):78-89, https://doi.org/10.1016/j.neuropharm.2019.01.025 . .