VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase

Authorized Users Only
2019
Authors
Radovanović, Neda
Malagurski, Ivana
Lević, Steva
Gordić, Milan V.
Petrović, Jelena M.
Pavlović, Vladimir B.
Mitrić, Miodrag
Nešić, Aleksandra
Dimitrijević-Branković, Suzana I.
Article (Published version)
,
© 2019 Elsevier Ltd
Metadata
Show full item record
Abstract
New agar-based composite films with increasing Cu-carbonate and Cu-phosphate mineral phase content were prepared by in situ mineralization and solvent casting method. SEM and optical analysis revealed that Cu-carbonate phase had better compatibility with agar matrix than Cu-phosphate phase. Incorporation of both mineral phases improved mechanical and water vapor barrier properties of the obtained mineralized films, in concentration dependent manner. When 5 mM of carbonate precursor was incorporated into agar matrix, mechanical resistance was enchanced for 44% and water vapor barrier property for 40%. The release of Cu (II) was higher in acidic conditions for both mineralized composites and remained in the range of specific release limits for this metal. In addition, both mineralized composite films exhibited distinctive antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Overall, the Cu-carbonate and Cu-phosphate mineraliz...ed agar films showed potential to be used for food packaging materials, agriculture or medical purposes. © 2019 Elsevier Ltd

Keywords:
Copper / Agar / Biocomposites / Antimicrobial activity
Source:
European Polymer Journal, 2019, 119, 352-358
Funding / projects:
  • Application of biotechnological methods for sustainable exploitation of by-products of agro-industry (RS-31035)
  • ANID CONICYT PIA/APOYO CCTE [AFB170007]

DOI: 10.1016/j.eurpolymj.2019.08.004

ISSN: 0014-3057

WoS: 000489191900040

Scopus: 2-s2.0-85070647119
[ Google Scholar ]
6
5
URI
https://vinar.vin.bg.ac.rs/handle/123456789/8454
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Radovanović, Neda
AU  - Malagurski, Ivana
AU  - Lević, Steva
AU  - Gordić, Milan V.
AU  - Petrović, Jelena M.
AU  - Pavlović, Vladimir B.
AU  - Mitrić, Miodrag
AU  - Nešić, Aleksandra
AU  - Dimitrijević-Branković, Suzana I.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8454
AB  - New agar-based composite films with increasing Cu-carbonate and Cu-phosphate mineral phase content were prepared by in situ mineralization and solvent casting method. SEM and optical analysis revealed that Cu-carbonate phase had better compatibility with agar matrix than Cu-phosphate phase. Incorporation of both mineral phases improved mechanical and water vapor barrier properties of the obtained mineralized films, in concentration dependent manner. When 5 mM of carbonate precursor was incorporated into agar matrix, mechanical resistance was enchanced for 44% and water vapor barrier property for 40%. The release of Cu (II) was higher in acidic conditions for both mineralized composites and remained in the range of specific release limits for this metal. In addition, both mineralized composite films exhibited distinctive antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Overall, the Cu-carbonate and Cu-phosphate mineralized agar films showed potential to be used for food packaging materials, agriculture or medical purposes. © 2019 Elsevier Ltd
T2  - European Polymer Journal
T1  - Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase
VL  - 119
SP  - 352
EP  - 358
DO  - 10.1016/j.eurpolymj.2019.08.004
ER  - 
@article{
author = "Radovanović, Neda and Malagurski, Ivana and Lević, Steva and Gordić, Milan V. and Petrović, Jelena M. and Pavlović, Vladimir B. and Mitrić, Miodrag and Nešić, Aleksandra and Dimitrijević-Branković, Suzana I.",
year = "2019",
abstract = "New agar-based composite films with increasing Cu-carbonate and Cu-phosphate mineral phase content were prepared by in situ mineralization and solvent casting method. SEM and optical analysis revealed that Cu-carbonate phase had better compatibility with agar matrix than Cu-phosphate phase. Incorporation of both mineral phases improved mechanical and water vapor barrier properties of the obtained mineralized films, in concentration dependent manner. When 5 mM of carbonate precursor was incorporated into agar matrix, mechanical resistance was enchanced for 44% and water vapor barrier property for 40%. The release of Cu (II) was higher in acidic conditions for both mineralized composites and remained in the range of specific release limits for this metal. In addition, both mineralized composite films exhibited distinctive antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Overall, the Cu-carbonate and Cu-phosphate mineralized agar films showed potential to be used for food packaging materials, agriculture or medical purposes. © 2019 Elsevier Ltd",
journal = "European Polymer Journal",
title = "Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase",
volume = "119",
pages = "352-358",
doi = "10.1016/j.eurpolymj.2019.08.004"
}
Radovanović, N., Malagurski, I., Lević, S., Gordić, M. V., Petrović, J. M., Pavlović, V. B., Mitrić, M., Nešić, A.,& Dimitrijević-Branković, S. I.. (2019). Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase. in European Polymer Journal, 119, 352-358.
https://doi.org/10.1016/j.eurpolymj.2019.08.004
Radovanović N, Malagurski I, Lević S, Gordić MV, Petrović JM, Pavlović VB, Mitrić M, Nešić A, Dimitrijević-Branković SI. Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase. in European Polymer Journal. 2019;119:352-358.
doi:10.1016/j.eurpolymj.2019.08.004 .
Radovanović, Neda, Malagurski, Ivana, Lević, Steva, Gordić, Milan V., Petrović, Jelena M., Pavlović, Vladimir B., Mitrić, Miodrag, Nešić, Aleksandra, Dimitrijević-Branković, Suzana I., "Tailoring the physico-chemical and antimicrobial properties of agar-based films by in situ formation of Cu-mineral phase" in European Polymer Journal, 119 (2019):352-358,
https://doi.org/10.1016/j.eurpolymj.2019.08.004 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB