Functional Geometry of Human Connectomes
Апстракт
Mapping the brain imaging data to networks, where nodes represent anatomical brain regions and edges indicate the occurrence of fiber tracts between them, has enabled an objective graph-theoretic analysis of human connectomes. However, the latent structure on higher-order interactions remains unexplored, where many brain regions act in synergy to perform complex functions. Here we use the simplicial complexes description of human connectome, where the shared simplexes encode higher-order relationships between groups of nodes. We study consensus connectome of 100 female (F-connectome) and of 100 male (M-connectome) subjects that we generated from the Budapest Reference Connectome Server v3.0 based on data from the Human Connectome Project. Our analysis reveals that the functional geometry of the common F&M-connectome coincides with the M-connectome and is characterized by a complex architecture of simplexes to the 14th order, which is built in six anatomical communities, and linked by s...hort cycles. The F-connectome has additional edges that involve different brain regions, thereby increasing the size of simplexes and introducing new cycles. Both connectomes contain characteristic subjacent graphs that make them 3/2-hyperbolic. These results shed new light on the functional architecture of the brain, suggesting that insightful differences among connectomes are hidden in their higher-order connectivity. © 2019, The Author(s).
Извор:
Scientific Reports, 2019, 9, 1, 12060-Финансирање / пројекти:
- Slovenian Research Agency - Slovenia [P1-0044]
- Напредне аналитичке, нумеричке и методе анализе примењене механике флуида и комплексних система (RS-MESTD-Basic Research (BR or ON)-174014)
- Natural Sciences and Engineering Research Council of Canada
- Australian Government, Department of Industry, Innovation and Science, Cooperative Research Centres (CRC) Programme
DOI: 10.1038/s41598-019-48568-5
ISSN: 2045-2322
PubMed: 31427676
WoS: 000481590200101
Scopus: 2-s2.0-85070793303
Институција/група
VinčaTY - JOUR AU - Tadić, Bosiljka AU - Anđelković, Miroslav AU - Melnik, Roderick PY - 2019 UR - https://vinar.vin.bg.ac.rs/handle/123456789/8451 AB - Mapping the brain imaging data to networks, where nodes represent anatomical brain regions and edges indicate the occurrence of fiber tracts between them, has enabled an objective graph-theoretic analysis of human connectomes. However, the latent structure on higher-order interactions remains unexplored, where many brain regions act in synergy to perform complex functions. Here we use the simplicial complexes description of human connectome, where the shared simplexes encode higher-order relationships between groups of nodes. We study consensus connectome of 100 female (F-connectome) and of 100 male (M-connectome) subjects that we generated from the Budapest Reference Connectome Server v3.0 based on data from the Human Connectome Project. Our analysis reveals that the functional geometry of the common F&M-connectome coincides with the M-connectome and is characterized by a complex architecture of simplexes to the 14th order, which is built in six anatomical communities, and linked by short cycles. The F-connectome has additional edges that involve different brain regions, thereby increasing the size of simplexes and introducing new cycles. Both connectomes contain characteristic subjacent graphs that make them 3/2-hyperbolic. These results shed new light on the functional architecture of the brain, suggesting that insightful differences among connectomes are hidden in their higher-order connectivity. © 2019, The Author(s). T2 - Scientific Reports T1 - Functional Geometry of Human Connectomes VL - 9 IS - 1 SP - 12060 DO - 10.1038/s41598-019-48568-5 ER -
@article{
author = "Tadić, Bosiljka and Anđelković, Miroslav and Melnik, Roderick",
year = "2019",
abstract = "Mapping the brain imaging data to networks, where nodes represent anatomical brain regions and edges indicate the occurrence of fiber tracts between them, has enabled an objective graph-theoretic analysis of human connectomes. However, the latent structure on higher-order interactions remains unexplored, where many brain regions act in synergy to perform complex functions. Here we use the simplicial complexes description of human connectome, where the shared simplexes encode higher-order relationships between groups of nodes. We study consensus connectome of 100 female (F-connectome) and of 100 male (M-connectome) subjects that we generated from the Budapest Reference Connectome Server v3.0 based on data from the Human Connectome Project. Our analysis reveals that the functional geometry of the common F&M-connectome coincides with the M-connectome and is characterized by a complex architecture of simplexes to the 14th order, which is built in six anatomical communities, and linked by short cycles. The F-connectome has additional edges that involve different brain regions, thereby increasing the size of simplexes and introducing new cycles. Both connectomes contain characteristic subjacent graphs that make them 3/2-hyperbolic. These results shed new light on the functional architecture of the brain, suggesting that insightful differences among connectomes are hidden in their higher-order connectivity. © 2019, The Author(s).",
journal = "Scientific Reports",
title = "Functional Geometry of Human Connectomes",
volume = "9",
number = "1",
pages = "12060",
doi = "10.1038/s41598-019-48568-5"
}
Tadić, B., Anđelković, M.,& Melnik, R.. (2019). Functional Geometry of Human Connectomes. in Scientific Reports, 9(1), 12060. https://doi.org/10.1038/s41598-019-48568-5
Tadić B, Anđelković M, Melnik R. Functional Geometry of Human Connectomes. in Scientific Reports. 2019;9(1):12060. doi:10.1038/s41598-019-48568-5 .
Tadić, Bosiljka, Anđelković, Miroslav, Melnik, Roderick, "Functional Geometry of Human Connectomes" in Scientific Reports, 9, no. 1 (2019):12060, https://doi.org/10.1038/s41598-019-48568-5 . .



