VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites

Authorized Users Only
2019
Authors
Marković, Zoran M.
Kováčová, Mária
Mičušik, Matej
Danko, Martin
Švajdlenkova, Helena
Kleinova, Angela
Humpoliček, Petr
Lehocky, Marian
Todorović-Marković, Biljana
Špitalsky, Zdeno
Article (Published version)
,
© 2018 Wiley Periodicals, Inc.
Metadata
Show full item record
Abstract
Various types of bacteria inhabit many surfaces thus causing problems which can have very strong impact on human health. Here we present a study of photophysical, mechanical, and antibacterial properties of curcumin/polyurethane nanocomposites prepared by swell-encapsulation-shrink method. The prepared nanocomposites have been characterized for degree of swelling, surface morphology, mechanical properties, chemical contents, photoluminescence, hydrophobicity, potentials for singlet oxygen generation, and antibacterial activity. Dynamic mechanical analysis has shown slight changes of glass temperature of curcumin/polyurethane nanocomposites due to blue light irradiation. It was found that nanocomposites have very strong photoluminescence, become photoactive upon blue light irradiation at 470 nm and generate singlet oxygen. Conducted antibacterial tests have shown very strong activity of these nanocomposites especially toward Escherichia coli. These bacteria strains have been eliminated ...completely only after 1 h irradiation by blue light. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 47283. © 2018 Wiley Periodicals, Inc.

Source:
Journal of Applied Polymer Science, 2019, 136, 13, 47283-
Funding / projects:
  • SASPRO Programme Project [1237/02/02-b]
  • SASPRO - Mobility Programme of Slovak Academy of Sciences: Supportive Fund for Excellent Scientists (EU-609427)
  • Slovak Academy of Sciences
  • Thin films of single wall carbon nanotubes and graphene for electronic application (RS-172003)
  • bilateral project Serbia-Slovakia [SK-SRB-2016-0038]
  • Vedecka grantova agentura MSVVaS SR a SAV (VEGA) [2/0093/16]
  • Grant Agency of the Czech Republic [17-05095S]
  • multilateral scientific and technological cooperation in the Danube region [DS021]

DOI: 10.1002/app.47283

ISSN: 0021-8995

WoS: 000454418300024

Scopus: 2-s2.0-85056780247
[ Google Scholar ]
18
10
URI
http://doi.wiley.com/10.1002/app.47283
https://vinar.vin.bg.ac.rs/handle/123456789/8445
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Marković, Zoran M.
AU  - Kováčová, Mária
AU  - Mičušik, Matej
AU  - Danko, Martin
AU  - Švajdlenkova, Helena
AU  - Kleinova, Angela
AU  - Humpoliček, Petr
AU  - Lehocky, Marian
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdeno
PY  - 2019
UR  - http://doi.wiley.com/10.1002/app.47283
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8445
AB  - Various types of bacteria inhabit many surfaces thus causing problems which can have very strong impact on human health. Here we present a study of photophysical, mechanical, and antibacterial properties of curcumin/polyurethane nanocomposites prepared by swell-encapsulation-shrink method. The prepared nanocomposites have been characterized for degree of swelling, surface morphology, mechanical properties, chemical contents, photoluminescence, hydrophobicity, potentials for singlet oxygen generation, and antibacterial activity. Dynamic mechanical analysis has shown slight changes of glass temperature of curcumin/polyurethane nanocomposites due to blue light irradiation. It was found that nanocomposites have very strong photoluminescence, become photoactive upon blue light irradiation at 470 nm and generate singlet oxygen. Conducted antibacterial tests have shown very strong activity of these nanocomposites especially toward Escherichia coli. These bacteria strains have been eliminated completely only after 1 h irradiation by blue light. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 47283. © 2018 Wiley Periodicals, Inc.
T2  - Journal of Applied Polymer Science
T1  - Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites
VL  - 136
IS  - 13
SP  - 47283
DO  - 10.1002/app.47283
ER  - 
@article{
author = "Marković, Zoran M. and Kováčová, Mária and Mičušik, Matej and Danko, Martin and Švajdlenkova, Helena and Kleinova, Angela and Humpoliček, Petr and Lehocky, Marian and Todorović-Marković, Biljana and Špitalsky, Zdeno",
year = "2019",
abstract = "Various types of bacteria inhabit many surfaces thus causing problems which can have very strong impact on human health. Here we present a study of photophysical, mechanical, and antibacterial properties of curcumin/polyurethane nanocomposites prepared by swell-encapsulation-shrink method. The prepared nanocomposites have been characterized for degree of swelling, surface morphology, mechanical properties, chemical contents, photoluminescence, hydrophobicity, potentials for singlet oxygen generation, and antibacterial activity. Dynamic mechanical analysis has shown slight changes of glass temperature of curcumin/polyurethane nanocomposites due to blue light irradiation. It was found that nanocomposites have very strong photoluminescence, become photoactive upon blue light irradiation at 470 nm and generate singlet oxygen. Conducted antibacterial tests have shown very strong activity of these nanocomposites especially toward Escherichia coli. These bacteria strains have been eliminated completely only after 1 h irradiation by blue light. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 47283. © 2018 Wiley Periodicals, Inc.",
journal = "Journal of Applied Polymer Science",
title = "Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites",
volume = "136",
number = "13",
pages = "47283",
doi = "10.1002/app.47283"
}
Marković, Z. M., Kováčová, M., Mičušik, M., Danko, M., Švajdlenkova, H., Kleinova, A., Humpoliček, P., Lehocky, M., Todorović-Marković, B.,& Špitalsky, Z.. (2019). Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites. in Journal of Applied Polymer Science, 136(13), 47283.
https://doi.org/10.1002/app.47283
Marković ZM, Kováčová M, Mičušik M, Danko M, Švajdlenkova H, Kleinova A, Humpoliček P, Lehocky M, Todorović-Marković B, Špitalsky Z. Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites. in Journal of Applied Polymer Science. 2019;136(13):47283.
doi:10.1002/app.47283 .
Marković, Zoran M., Kováčová, Mária, Mičušik, Matej, Danko, Martin, Švajdlenkova, Helena, Kleinova, Angela, Humpoliček, Petr, Lehocky, Marian, Todorović-Marković, Biljana, Špitalsky, Zdeno, "Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites" in Journal of Applied Polymer Science, 136, no. 13 (2019):47283,
https://doi.org/10.1002/app.47283 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB