Phase transitions in higher-melting imidazolium-based ionic liquids: Experiments and advanced data analysis
No Thumbnail
Authors
Čanji, MajaBendova, Magdalena

Bogdanov, Milen G.

Wagner, Zdenek
Zdolšek, Nikola

Quirion, François
Jandová, Věra
Vrbka, Pavel
Article (Published version)

© 2019 Elsevier B.V.
Metadata
Show full item recordAbstract
As thermal energy storage becomes an increasingly important topic, good knowledge of properties of phase-change materials (PCM) is essential. Among other properties, a good PCM should show a large enthalpy of melting, reproducible melting/solidification cycles, and long-term thermal stability. Temperatures and enthalpies of fusion should be determined at a possibly large range of conditions to allow for a critical evaluation of the experimental data and assessment of the material application potential. In this work, imidazolium-based ionic liquids (ILs) with long alkyl chain substituents 1-hexadecyl-3-methylimidazolium chloride and 1-hexadecyl-3-methyl-imidazolium saccharinate were studied in view of their possible use as phase-change materials. Differential scanning calorimetry (DSC) and the heat-leak modulus (HLM) methods were used to determine the temperatures and the enthalpies of phase transitions in the studied ILs, enabling us to study the influence of the heating and cooling ra...tes on the measured properties. Enthalpies of fusion near to or larger than 100 J·g−1 were found in the studied ionic liquids, making them promising candidates for thermal energy storage. Peaks corresponding to possible liquid crystalline phases in the DSC traces of 1-hexadecyl-3-methylimidazolium saccharinate were observed, pointing to more complex phase behaviour of the studied ionic liquids. Finally, to critically evaluate the experimental data measured in this work, methods based on mathematical gnostics were used. Repeatability of measurements and the degree of mutual agreement between the methods used in this work could thus be determined. © 2019 Elsevier B.V.
Keywords:
Ionic liquids / Phase change materials / Liquid crystals / Thermodynamic properties / Phase transitions / Differential scanning calorimetry / Heat-leak modulus / Mathematical gnosticsSource:
Journal of Molecular Liquids, 2019, 292, 111222-Funding / projects:
- Grant Agency of the Czech Republic [17-08218S]
- Physics and Chemistry with Ion Beams (RS-45006)
DOI: 10.1016/j.molliq.2019.111222
ISSN: 0167-7322
WoS: 000488658900011
Scopus: 2-s2.0-85069704013
Collections
Institution/Community
VinčaTY - JOUR AU - Čanji, Maja AU - Bendova, Magdalena AU - Bogdanov, Milen G. AU - Wagner, Zdenek AU - Zdolšek, Nikola AU - Quirion, François AU - Jandová, Věra AU - Vrbka, Pavel PY - 2019 UR - https://vinar.vin.bg.ac.rs/handle/123456789/8423 AB - As thermal energy storage becomes an increasingly important topic, good knowledge of properties of phase-change materials (PCM) is essential. Among other properties, a good PCM should show a large enthalpy of melting, reproducible melting/solidification cycles, and long-term thermal stability. Temperatures and enthalpies of fusion should be determined at a possibly large range of conditions to allow for a critical evaluation of the experimental data and assessment of the material application potential. In this work, imidazolium-based ionic liquids (ILs) with long alkyl chain substituents 1-hexadecyl-3-methylimidazolium chloride and 1-hexadecyl-3-methyl-imidazolium saccharinate were studied in view of their possible use as phase-change materials. Differential scanning calorimetry (DSC) and the heat-leak modulus (HLM) methods were used to determine the temperatures and the enthalpies of phase transitions in the studied ILs, enabling us to study the influence of the heating and cooling rates on the measured properties. Enthalpies of fusion near to or larger than 100 J·g−1 were found in the studied ionic liquids, making them promising candidates for thermal energy storage. Peaks corresponding to possible liquid crystalline phases in the DSC traces of 1-hexadecyl-3-methylimidazolium saccharinate were observed, pointing to more complex phase behaviour of the studied ionic liquids. Finally, to critically evaluate the experimental data measured in this work, methods based on mathematical gnostics were used. Repeatability of measurements and the degree of mutual agreement between the methods used in this work could thus be determined. © 2019 Elsevier B.V. T2 - Journal of Molecular Liquids T1 - Phase transitions in higher-melting imidazolium-based ionic liquids: Experiments and advanced data analysis VL - 292 SP - 111222 DO - 10.1016/j.molliq.2019.111222 ER -
@article{ author = "Čanji, Maja and Bendova, Magdalena and Bogdanov, Milen G. and Wagner, Zdenek and Zdolšek, Nikola and Quirion, François and Jandová, Věra and Vrbka, Pavel", year = "2019", abstract = "As thermal energy storage becomes an increasingly important topic, good knowledge of properties of phase-change materials (PCM) is essential. Among other properties, a good PCM should show a large enthalpy of melting, reproducible melting/solidification cycles, and long-term thermal stability. Temperatures and enthalpies of fusion should be determined at a possibly large range of conditions to allow for a critical evaluation of the experimental data and assessment of the material application potential. In this work, imidazolium-based ionic liquids (ILs) with long alkyl chain substituents 1-hexadecyl-3-methylimidazolium chloride and 1-hexadecyl-3-methyl-imidazolium saccharinate were studied in view of their possible use as phase-change materials. Differential scanning calorimetry (DSC) and the heat-leak modulus (HLM) methods were used to determine the temperatures and the enthalpies of phase transitions in the studied ILs, enabling us to study the influence of the heating and cooling rates on the measured properties. Enthalpies of fusion near to or larger than 100 J·g−1 were found in the studied ionic liquids, making them promising candidates for thermal energy storage. Peaks corresponding to possible liquid crystalline phases in the DSC traces of 1-hexadecyl-3-methylimidazolium saccharinate were observed, pointing to more complex phase behaviour of the studied ionic liquids. Finally, to critically evaluate the experimental data measured in this work, methods based on mathematical gnostics were used. Repeatability of measurements and the degree of mutual agreement between the methods used in this work could thus be determined. © 2019 Elsevier B.V.", journal = "Journal of Molecular Liquids", title = "Phase transitions in higher-melting imidazolium-based ionic liquids: Experiments and advanced data analysis", volume = "292", pages = "111222", doi = "10.1016/j.molliq.2019.111222" }
Čanji, M., Bendova, M., Bogdanov, M. G., Wagner, Z., Zdolšek, N., Quirion, F., Jandová, V.,& Vrbka, P.. (2019). Phase transitions in higher-melting imidazolium-based ionic liquids: Experiments and advanced data analysis. in Journal of Molecular Liquids, 292, 111222. https://doi.org/10.1016/j.molliq.2019.111222
Čanji M, Bendova M, Bogdanov MG, Wagner Z, Zdolšek N, Quirion F, Jandová V, Vrbka P. Phase transitions in higher-melting imidazolium-based ionic liquids: Experiments and advanced data analysis. in Journal of Molecular Liquids. 2019;292:111222. doi:10.1016/j.molliq.2019.111222 .
Čanji, Maja, Bendova, Magdalena, Bogdanov, Milen G., Wagner, Zdenek, Zdolšek, Nikola, Quirion, François, Jandová, Věra, Vrbka, Pavel, "Phase transitions in higher-melting imidazolium-based ionic liquids: Experiments and advanced data analysis" in Journal of Molecular Liquids, 292 (2019):111222, https://doi.org/10.1016/j.molliq.2019.111222 . .