VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structure and enhanced antimicrobial activity of mechanically activated nano TiO2

Authorized Users Only
2019
Authors
Pavlović, Vera P.
Vujančević, Jelena
Mašković, Pavle Z.
Ćirković, Jovana
Papan, Jelena
Kosanović, Darko
Dramićanin, Miroslav
Petrović, Predrag B.
Vlahović, Branislav
Pavlović, Vladimir B.
Article (Published version)
,
© 2019 The American Ceramic Society
Metadata
Show full item record
Abstract
Titanium dioxide is a photocatalyst, known not only for its ability to oxidize organic contaminants, but also for its antimicrobial properties. In this article, significant enhancement of the antimicrobial activity of TiO2 (up to 32 times) was demonstrated after its activation by ball milling. The antimicrobial activity was analyzed for one fungal and 13 bacterial ATCC strains using the microdilution method and recording the minimum inhibitory concentration (MIC) values. In order to further investigate the correlation between the mechanical activation of TiO2 and its antimicrobial activity, the structure, morphology and phase composition of the material were studied by means of Electron Microscopy, X-ray diffraction and nitrogen adsorption-desorption measurements. UV-Vis diffuse reflectance spectra were recorded and the Kubelka-Munk function was applied to convert reflectance into the equivalent band gap energy (Eg) and, consequently, to investigate changes in the Eg value. X-ray photo...electron spectroscopy was used to analyze the influence of mechanical activation on the Ti 2p and O 1s spectra. The presented results are expected to enable the development of more sustainable and effective advanced TiO2-based materials with antimicrobial properties that could be used in numerous green technology applications.

Keywords:
antimicrobial activity / mechanical activation / spectroscopy / structure / titanium dioxide
Source:
Journal of the American Ceramic Society, 2019, 102, 12, 7735-7745
Funding / projects:
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)
  • United States National Aeronautics and Space Administration (NASA), Grant NNX09AV07A
  • United States National Science Foundation (NSF) / Centers of Research Excellence in Science and Technology (CREST), Grant HRD-0833184
  • United States National Science Foundation (NSF) / Partnerships for Research and Education in Materials (PREM), Grant 1523617
Note:
  • Post-print version available at: http://vinar.vin.bg.ac.rs/handle/123456789/8384

DOI: 10.1111/jace.16668

ISSN: 1551-2916

WoS: 000474471900001

Scopus: 2-s2.0-85068648566
[ Google Scholar ]
11
4
URI
https://vinar.vin.bg.ac.rs/handle/123456789/8380
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Pavlović, Vera P.
AU  - Vujančević, Jelena
AU  - Mašković, Pavle Z.
AU  - Ćirković, Jovana
AU  - Papan, Jelena
AU  - Kosanović, Darko
AU  - Dramićanin, Miroslav
AU  - Petrović, Predrag B.
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8380
AB  - Titanium dioxide is a photocatalyst, known not only for its ability to oxidize organic contaminants, but also for its antimicrobial properties. In this article, significant enhancement of the antimicrobial activity of TiO2 (up to 32 times) was demonstrated after its activation by ball milling. The antimicrobial activity was analyzed for one fungal and 13 bacterial ATCC strains using the microdilution method and recording the minimum inhibitory concentration (MIC) values. In order to further investigate the correlation between the mechanical activation of TiO2 and its antimicrobial activity, the structure, morphology and phase composition of the material were studied by means of Electron Microscopy, X-ray diffraction and nitrogen adsorption-desorption measurements. UV-Vis diffuse reflectance spectra were recorded and the Kubelka-Munk function was applied to convert reflectance into the equivalent band gap energy (Eg) and, consequently, to investigate changes in the Eg value. X-ray photoelectron spectroscopy was used to analyze the influence of mechanical activation on the Ti 2p and O 1s spectra. The presented results are expected to enable the development of more sustainable and effective advanced TiO2-based materials with antimicrobial properties that could be used in numerous green technology applications.
T2  - Journal of the American Ceramic Society
T1  - Structure and enhanced antimicrobial activity of mechanically activated nano TiO2
VL  - 102
IS  - 12
SP  - 7735
EP  - 7745
DO  - 10.1111/jace.16668
ER  - 
@article{
author = "Pavlović, Vera P. and Vujančević, Jelena and Mašković, Pavle Z. and Ćirković, Jovana and Papan, Jelena and Kosanović, Darko and Dramićanin, Miroslav and Petrović, Predrag B. and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2019",
abstract = "Titanium dioxide is a photocatalyst, known not only for its ability to oxidize organic contaminants, but also for its antimicrobial properties. In this article, significant enhancement of the antimicrobial activity of TiO2 (up to 32 times) was demonstrated after its activation by ball milling. The antimicrobial activity was analyzed for one fungal and 13 bacterial ATCC strains using the microdilution method and recording the minimum inhibitory concentration (MIC) values. In order to further investigate the correlation between the mechanical activation of TiO2 and its antimicrobial activity, the structure, morphology and phase composition of the material were studied by means of Electron Microscopy, X-ray diffraction and nitrogen adsorption-desorption measurements. UV-Vis diffuse reflectance spectra were recorded and the Kubelka-Munk function was applied to convert reflectance into the equivalent band gap energy (Eg) and, consequently, to investigate changes in the Eg value. X-ray photoelectron spectroscopy was used to analyze the influence of mechanical activation on the Ti 2p and O 1s spectra. The presented results are expected to enable the development of more sustainable and effective advanced TiO2-based materials with antimicrobial properties that could be used in numerous green technology applications.",
journal = "Journal of the American Ceramic Society",
title = "Structure and enhanced antimicrobial activity of mechanically activated nano TiO2",
volume = "102",
number = "12",
pages = "7735-7745",
doi = "10.1111/jace.16668"
}
Pavlović, V. P., Vujančević, J., Mašković, P. Z., Ćirković, J., Papan, J., Kosanović, D., Dramićanin, M., Petrović, P. B., Vlahović, B.,& Pavlović, V. B.. (2019). Structure and enhanced antimicrobial activity of mechanically activated nano TiO2. in Journal of the American Ceramic Society, 102(12), 7735-7745.
https://doi.org/10.1111/jace.16668
Pavlović VP, Vujančević J, Mašković PZ, Ćirković J, Papan J, Kosanović D, Dramićanin M, Petrović PB, Vlahović B, Pavlović VB. Structure and enhanced antimicrobial activity of mechanically activated nano TiO2. in Journal of the American Ceramic Society. 2019;102(12):7735-7745.
doi:10.1111/jace.16668 .
Pavlović, Vera P., Vujančević, Jelena, Mašković, Pavle Z., Ćirković, Jovana, Papan, Jelena, Kosanović, Darko, Dramićanin, Miroslav, Petrović, Predrag B., Vlahović, Branislav, Pavlović, Vladimir B., "Structure and enhanced antimicrobial activity of mechanically activated nano TiO2" in Journal of the American Ceramic Society, 102, no. 12 (2019):7735-7745,
https://doi.org/10.1111/jace.16668 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB