VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease

Thumbnail
2019
5028181.pdf (1.610Mb)
Authors
Bajić, Vladan P.
Van Neste, Christophe
Obradović, Milan M.
Zafirović, Sonja
Radak, Đorđe J.
Bajić, Vladimir B.
Essack, Magbubah
Isenović, Esma R.
Article (Published version)
,
Copyright © 2019 Vladan P. Bajic et al.
Metadata
Show full item record
Abstract
More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise from enhanced levels of free radicals causing impaired “redox homeostasis,” which represents the interplay between oxidative stress (OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged antioxidant state or RS can similarly lead to such cardiovascular complications. This experimental evidence is specifically focused on the role of glutathione, the most abundant antioxidant in the heart, in a redox homeostatic mechanism that has been shifted towards OS or RS. This may lead to impairment of cellular signaling mechanisms and elevated pools of proteotoxicity associated with cardiac dysfunction.
Source:
Oxidative Medicine and Cellular Longevity, 2019, 2019, 5028181-
Funding / projects:
  • Hormonal regulation of expression and activity of the nitric oxide synthase and sodium-potassium pump in experimental models of insulin resistance, diabetes and cardiovascular disorders (RS-173033)
  • Cell Cycle Aberrations and the Impact of Oxidative Stress in Neurodegenerative Processes and Malignant Transformation of the Cell (RS-173034)
  • Carotid disease in Serbia - pathologic dynamics, prevention, diagnostics and inovative therapeutic methods (RS-41002)
  • King Abdullah University of Science and Technology (KAUST) Base Research Fund [BAS/1/1606-01-01]
  • KAUST Office of Sponsored Research (OSR) Awards [FCC/1/1976-24-01]

DOI: 10.1155/2019/5028181

ISSN: 1942-0900; 1942-0994

PubMed: 31210841

WoS: 000468565600001

Scopus: 2-s2.0-85068390274
[ Google Scholar ]
73
38
URI
https://vinar.vin.bg.ac.rs/handle/123456789/8375
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Bajić, Vladan P.
AU  - Van Neste, Christophe
AU  - Obradović, Milan M.
AU  - Zafirović, Sonja
AU  - Radak, Đorđe J.
AU  - Bajić, Vladimir B.
AU  - Essack, Magbubah
AU  - Isenović, Esma R.
PY  - 2019
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8375
AB  - More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise from enhanced levels of free radicals causing impaired “redox homeostasis,” which represents the interplay between oxidative stress (OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged antioxidant state or RS can similarly lead to such cardiovascular complications. This experimental evidence is specifically focused on the role of glutathione, the most abundant antioxidant in the heart, in a redox homeostatic mechanism that has been shifted towards OS or RS. This may lead to impairment of cellular signaling mechanisms and elevated pools of proteotoxicity associated with cardiac dysfunction.
T2  - Oxidative Medicine and Cellular Longevity
T1  - Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease
VL  - 2019
SP  - 5028181
DO  - 10.1155/2019/5028181
ER  - 
@article{
author = "Bajić, Vladan P. and Van Neste, Christophe and Obradović, Milan M. and Zafirović, Sonja and Radak, Đorđe J. and Bajić, Vladimir B. and Essack, Magbubah and Isenović, Esma R.",
year = "2019",
abstract = "More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise from enhanced levels of free radicals causing impaired “redox homeostasis,” which represents the interplay between oxidative stress (OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged antioxidant state or RS can similarly lead to such cardiovascular complications. This experimental evidence is specifically focused on the role of glutathione, the most abundant antioxidant in the heart, in a redox homeostatic mechanism that has been shifted towards OS or RS. This may lead to impairment of cellular signaling mechanisms and elevated pools of proteotoxicity associated with cardiac dysfunction.",
journal = "Oxidative Medicine and Cellular Longevity",
title = "Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease",
volume = "2019",
pages = "5028181",
doi = "10.1155/2019/5028181"
}
Bajić, V. P., Van Neste, C., Obradović, M. M., Zafirović, S., Radak, Đ. J., Bajić, V. B., Essack, M.,& Isenović, E. R.. (2019). Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease. in Oxidative Medicine and Cellular Longevity, 2019, 5028181.
https://doi.org/10.1155/2019/5028181
Bajić VP, Van Neste C, Obradović MM, Zafirović S, Radak ĐJ, Bajić VB, Essack M, Isenović ER. Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease. in Oxidative Medicine and Cellular Longevity. 2019;2019:5028181.
doi:10.1155/2019/5028181 .
Bajić, Vladan P., Van Neste, Christophe, Obradović, Milan M., Zafirović, Sonja, Radak, Đorđe J., Bajić, Vladimir B., Essack, Magbubah, Isenović, Esma R., "Glutathione “Redox Homeostasis” and Its Relation to Cardiovascular Disease" in Oxidative Medicine and Cellular Longevity, 2019 (2019):5028181,
https://doi.org/10.1155/2019/5028181 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB