VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spiral waves in externally excited neuronal network: Solvable model with a monotonically differentiable magnetic flux

Authorized Users Only
2019
Authors
Rajagopal, Karthikeyan
Parastesh, Fatemeh
Azarnoush, Hamed
Hatef, Boshra
Jafari, Sajad
Berec, Vesna I.
Article (Published version)
Metadata
Show full item record
Abstract
Spiral waves are particular spatiotemporal patterns connected to specific phase singularities representing topological wave dislocations or nodes of zero amplitude, witnessed in a wide range of complex systems such as neuronal networks. The appearance of these waves is linked to the network structure as well as the diffusion dynamics of its blocks. We report a novel form of the Hindmarsh-Rose neuron model utilized as a square neuronal network, showing the remarkable multistructure of dynamical patterns ranging from characteristic spiral wave domains of spatiotemporal phase coherence to regions of hyperchaos. The proposed model comprises a hyperbolic memductance function as the monotone differentiable magnetic flux. Hindmarsh-Rose neurons with an external electromagnetic excitation are considered in three different cases: no excitation, periodic excitation, and quasiperiodic excitation. We performed an extensive study of the neuronal dynamics including calculation of equilibrium points,... bifurcation analysis, and Lyapunov spectrum. We have found the property of antimonotonicity in bifurcation scenarios with no excitation or periodic excitation and identified wide regions of hyperchaos in the case of quasiperiodic excitation. Furthermore, the formation and elimination of the spiral waves in each case of external excitation with respect to stimuli parameters are investigated. We have identified novel forms of Hindmarsh-Rose bursting dynamics. Our findings reveal multipartite spiral wave formations and symmetry breaking spatiotemporal dynamics of the neuronal model that may find broad practical applications. © 2019 Author(s).

Source:
Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019, 29, 4, 043109-

DOI: 10.1063/1.5088654

ISSN: 1054-1500 (print); 1089-7682 (electronic)

PubMed: 31042930

WoS: 000466616500014

Scopus: 2-s2.0-85064194151
[ Google Scholar ]
11
9
URI
http://aip.scitation.org/doi/10.1063/1.5088654
http://vinar.vin.bg.ac.rs/handle/123456789/8147
Collections
  • Radovi istraživača
Institution
Vinča

DSpace software copyright © 2002-2015  DuraSpace
About VinaR - Repository of the Vinča Institute of Nuclear Sciences | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About VinaR - Repository of the Vinča Institute of Nuclear Sciences | Send Feedback

OpenAIRERCUB