VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles

No Thumbnail
Authors
Ognjanović, Miloš
Spasojević, Irena
Stanković, Dalibor M.
Ming, Yue
Jančar, Boštjan
Dojčinović, Biljana P.
Spasojević, Vojislav
Antić, Bratislav
Article (Published version)
Metadata
Show full item record
Abstract
A series of MgxFe3-xO₄ (x ═ 0-1) nanoparticles was synthesized in order to prepare novel MgxFe3-xO₄/glassy carbon modified electrodes. Effects of magnesium content (x) on the analytical performance of the modified electrodes in the detection of gallic acid were evaluated. It was found that magnesium concentration and crystallite/particle size of the prepared nanoparticles play significant roles in the sensing properties of modified electrodes. The increase of magnesium concentration up to the value of x ═ 0.4 in MgxFe3-xO₄/glassy carbon paste was accompanied by an increase of the corresponding oxidation current of gallic acid. However, further growth of x value caused decline of the obtained oxidation current. An electroanalytical procedure was established, and the analytical performance of the proposed Mg0.4Fe2.6O₄/glassy carbon paste electrode was monitored using previously optimized experimental conditions. A working linear range from 1-39 µM gallic acid was obtained with detection ...limit of 0.29 µM. According to these results, the developed procedure can be applied for detection of low concentrations of gallic acid with satisfactory selectivity in the presence of some common naturally occurring compounds. Experimental results indicate that the developed procedure could be a novel approach in the detection of antioxidant, overcoming some known disadvantages such as passivation, and could be a promising replacement for sophisticated chromatographic methods.

Keywords:
Nanoparticles / MW Hydrothermal Synthesis / Structural Characterization / Carbon Electrodes / Sensors
Source:
Journal of Nanoscience and Nanotechnology, 2019, 19, 7, 4205-4213
Funding / projects:
  • Ministry of Education, Science and Technological Development of the Republic of Serbia [E!9982]
  • Strengthening of the MagBioVin Research and Innovation Team for Development of Novel Approaches for Tumour Therapy based on Nanostructured Materials (EU-621375)

DOI: 10.1166/jnn.2019.16284

ISSN: 1533-4880; 1533-4899

PubMed: 30764994

WoS: 000458815300070

[ Google Scholar ]
URI
https://www.ingentaconnect.com/content/10.1166/jnn.2019.16284
https://vinar.vin.bg.ac.rs/handle/123456789/8074
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Ognjanović, Miloš
AU  - Spasojević, Irena
AU  - Stanković, Dalibor M.
AU  - Ming, Yue
AU  - Jančar, Boštjan
AU  - Dojčinović, Biljana P.
AU  - Spasojević, Vojislav
AU  - Antić, Bratislav
PY  - 2019
UR  - https://www.ingentaconnect.com/content/10.1166/jnn.2019.16284
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8074
AB  - A series of MgxFe3-xO₄ (x ═ 0-1) nanoparticles was synthesized in order to prepare novel MgxFe3-xO₄/glassy carbon modified electrodes. Effects of magnesium content (x) on the analytical performance of the modified electrodes in the detection of gallic acid were evaluated. It was found that magnesium concentration and crystallite/particle size of the prepared nanoparticles play significant roles in the sensing properties of modified electrodes. The increase of magnesium concentration up to the value of x ═ 0.4 in MgxFe3-xO₄/glassy carbon paste was accompanied by an increase of the corresponding oxidation current of gallic acid. However, further growth of x value caused decline of the obtained oxidation current. An electroanalytical procedure was established, and the analytical performance of the proposed Mg0.4Fe2.6O₄/glassy carbon paste electrode was monitored using previously optimized experimental conditions. A working linear range from 1-39 µM gallic acid was obtained with detection limit of 0.29 µM. According to these results, the developed procedure can be applied for detection of low concentrations of gallic acid with satisfactory selectivity in the presence of some common naturally occurring compounds. Experimental results indicate that the developed procedure could be a novel approach in the detection of antioxidant, overcoming some known disadvantages such as passivation, and could be a promising replacement for sophisticated chromatographic methods.
T2  - Journal of Nanoscience and Nanotechnology
T1  - Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles
VL  - 19
IS  - 7
SP  - 4205
EP  - 4213
DO  - 10.1166/jnn.2019.16284
ER  - 
@article{
author = "Ognjanović, Miloš and Spasojević, Irena and Stanković, Dalibor M. and Ming, Yue and Jančar, Boštjan and Dojčinović, Biljana P. and Spasojević, Vojislav and Antić, Bratislav",
year = "2019",
abstract = "A series of MgxFe3-xO₄ (x ═ 0-1) nanoparticles was synthesized in order to prepare novel MgxFe3-xO₄/glassy carbon modified electrodes. Effects of magnesium content (x) on the analytical performance of the modified electrodes in the detection of gallic acid were evaluated. It was found that magnesium concentration and crystallite/particle size of the prepared nanoparticles play significant roles in the sensing properties of modified electrodes. The increase of magnesium concentration up to the value of x ═ 0.4 in MgxFe3-xO₄/glassy carbon paste was accompanied by an increase of the corresponding oxidation current of gallic acid. However, further growth of x value caused decline of the obtained oxidation current. An electroanalytical procedure was established, and the analytical performance of the proposed Mg0.4Fe2.6O₄/glassy carbon paste electrode was monitored using previously optimized experimental conditions. A working linear range from 1-39 µM gallic acid was obtained with detection limit of 0.29 µM. According to these results, the developed procedure can be applied for detection of low concentrations of gallic acid with satisfactory selectivity in the presence of some common naturally occurring compounds. Experimental results indicate that the developed procedure could be a novel approach in the detection of antioxidant, overcoming some known disadvantages such as passivation, and could be a promising replacement for sophisticated chromatographic methods.",
journal = "Journal of Nanoscience and Nanotechnology",
title = "Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles",
volume = "19",
number = "7",
pages = "4205-4213",
doi = "10.1166/jnn.2019.16284"
}
Ognjanović, M., Spasojević, I., Stanković, D. M., Ming, Y., Jančar, B., Dojčinović, B. P., Spasojević, V.,& Antić, B.. (2019). Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles. in Journal of Nanoscience and Nanotechnology, 19(7), 4205-4213.
https://doi.org/10.1166/jnn.2019.16284
Ognjanović M, Spasojević I, Stanković DM, Ming Y, Jančar B, Dojčinović BP, Spasojević V, Antić B. Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles. in Journal of Nanoscience and Nanotechnology. 2019;19(7):4205-4213.
doi:10.1166/jnn.2019.16284 .
Ognjanović, Miloš, Spasojević, Irena, Stanković, Dalibor M., Ming, Yue, Jančar, Boštjan, Dojčinović, Biljana P., Spasojević, Vojislav, Antić, Bratislav, "Enhancing Analytical Performance of (Mg,Fe)3O4/Glassy Carbon Electrodes by Tailoring Chemical Composition of (Mg,Fe)3O4 Nanoparticles" in Journal of Nanoscience and Nanotechnology, 19, no. 7 (2019):4205-4213,
https://doi.org/10.1166/jnn.2019.16284 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB