VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents

Authorized Users Only
2018
Authors
Kovačova, Maria
Marković, Zoran M.
Humpoliček, Petr
Mičušik, Matej
Švajdlenkova, Helena
Kleinova, Angela
Danko, Martin
Kubat, Pavel
Vajdak, Jan
Capakova, Zdenka
Lehocky, Marian
Munster, Lukaš
Todorović-Marković, Biljana
Špitalsky, Zdenko
Article (Published version)
,
© 2018 American Chemical Society
Metadata
Show full item record
Abstract
Development of new types of antibacterial coatings or nanocomposites is of great importance due to widespread multidrug-resistant infections including bacterial infections. Herein, we investigated biocompatibility as well as structural, photocatalytic, and antibacterial properties of photoactive hydrophobic carbon quantum dots/polyurethane nanocomposite. The swell-encapsulation-shrink method was applied for production of these nanocomposites. Hydrophobic carbon quantum dots/polyurethane nanocomposites were found to be highly effective generator of singlet oxygen upon irradiation by low-power blue light. Analysis of conducted antibacterial tests on Staphyloccocus aureus and Escherichia coli showed 5-log bactericidal effect of these nanocomposites within 60 min of irradiation. Very powerful degradation of dye (rose bengal) was observed within 180 min of blue light irradiation of the nanocomposites. Biocompatibility studies revealed that nanocomposites were not cytotoxic against mouse emb...ryonic fibroblast cell line, whereas they showed moderate cytotoxicity toward adenocarcinomic human epithelial cell line. Minor hemolytic effect of these nanocomposites toward red blood cells was revealed.

Keywords:
hydrophobic carbon quantum dots / polyurethane / reactive oxygen species production / photocatalytic activity / antibacterial activity / visible light sterilization / hydrophobic carbon quantum dots / polyurethane / reactive oxygen species production / photocatalytic activity / antibacterial activity / visible light sterilization
Source:
ACS Biomaterials Science & Engineering, 2018, 4, 12, 3983-3993
Funding / projects:
  • SASPRO Programme (No. 1237/02/02-b)
  • People Programme (Marie Curie Actions) European Union's Seventh Framework Programme under REA (No. 609427)
  • VEGA [2/0093/16]
  • Czech Science Foundation (17-05095S)
  • Thin films of single wall carbon nanotubes and graphene for electronic application (RS-172003)
  • Bilateral project Serbia-Slovakia (SK-SRB-2016-0038)
  • Multilateral scientific and technological cooperation in the Danube region (DS-2016-021)

DOI: 10.1021/acsbiomaterials.8b00582

ISSN: 2373-9878

WoS: 000453109000007

Scopus: 2-s2.0-85054970446
[ Google Scholar ]
78
56
URI
http://pubs.acs.org/doi/10.1021/acsbiomaterials.8b00582
https://vinar.vin.bg.ac.rs/handle/123456789/8064
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Kovačova, Maria
AU  - Marković, Zoran M.
AU  - Humpoliček, Petr
AU  - Mičušik, Matej
AU  - Švajdlenkova, Helena
AU  - Kleinova, Angela
AU  - Danko, Martin
AU  - Kubat, Pavel
AU  - Vajdak, Jan
AU  - Capakova, Zdenka
AU  - Lehocky, Marian
AU  - Munster, Lukaš
AU  - Todorović-Marković, Biljana
AU  - Špitalsky, Zdenko
PY  - 2018
UR  - http://pubs.acs.org/doi/10.1021/acsbiomaterials.8b00582
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/8064
AB  - Development of new types of antibacterial coatings or nanocomposites is of great importance due to widespread multidrug-resistant infections including bacterial infections. Herein, we investigated biocompatibility as well as structural, photocatalytic, and antibacterial properties of photoactive hydrophobic carbon quantum dots/polyurethane nanocomposite. The swell-encapsulation-shrink method was applied for production of these nanocomposites. Hydrophobic carbon quantum dots/polyurethane nanocomposites were found to be highly effective generator of singlet oxygen upon irradiation by low-power blue light. Analysis of conducted antibacterial tests on Staphyloccocus aureus and Escherichia coli showed 5-log bactericidal effect of these nanocomposites within 60 min of irradiation. Very powerful degradation of dye (rose bengal) was observed within 180 min of blue light irradiation of the nanocomposites. Biocompatibility studies revealed that nanocomposites were not cytotoxic against mouse embryonic fibroblast cell line, whereas they showed moderate cytotoxicity toward adenocarcinomic human epithelial cell line. Minor hemolytic effect of these nanocomposites toward red blood cells was revealed.
T2  - ACS Biomaterials Science & Engineering
T1  - Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents
VL  - 4
IS  - 12
SP  - 3983
EP  - 3993
DO  - 10.1021/acsbiomaterials.8b00582
ER  - 
@article{
author = "Kovačova, Maria and Marković, Zoran M. and Humpoliček, Petr and Mičušik, Matej and Švajdlenkova, Helena and Kleinova, Angela and Danko, Martin and Kubat, Pavel and Vajdak, Jan and Capakova, Zdenka and Lehocky, Marian and Munster, Lukaš and Todorović-Marković, Biljana and Špitalsky, Zdenko",
year = "2018",
abstract = "Development of new types of antibacterial coatings or nanocomposites is of great importance due to widespread multidrug-resistant infections including bacterial infections. Herein, we investigated biocompatibility as well as structural, photocatalytic, and antibacterial properties of photoactive hydrophobic carbon quantum dots/polyurethane nanocomposite. The swell-encapsulation-shrink method was applied for production of these nanocomposites. Hydrophobic carbon quantum dots/polyurethane nanocomposites were found to be highly effective generator of singlet oxygen upon irradiation by low-power blue light. Analysis of conducted antibacterial tests on Staphyloccocus aureus and Escherichia coli showed 5-log bactericidal effect of these nanocomposites within 60 min of irradiation. Very powerful degradation of dye (rose bengal) was observed within 180 min of blue light irradiation of the nanocomposites. Biocompatibility studies revealed that nanocomposites were not cytotoxic against mouse embryonic fibroblast cell line, whereas they showed moderate cytotoxicity toward adenocarcinomic human epithelial cell line. Minor hemolytic effect of these nanocomposites toward red blood cells was revealed.",
journal = "ACS Biomaterials Science & Engineering",
title = "Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents",
volume = "4",
number = "12",
pages = "3983-3993",
doi = "10.1021/acsbiomaterials.8b00582"
}
Kovačova, M., Marković, Z. M., Humpoliček, P., Mičušik, M., Švajdlenkova, H., Kleinova, A., Danko, M., Kubat, P., Vajdak, J., Capakova, Z., Lehocky, M., Munster, L., Todorović-Marković, B.,& Špitalsky, Z.. (2018). Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents. in ACS Biomaterials Science & Engineering, 4(12), 3983-3993.
https://doi.org/10.1021/acsbiomaterials.8b00582
Kovačova M, Marković ZM, Humpoliček P, Mičušik M, Švajdlenkova H, Kleinova A, Danko M, Kubat P, Vajdak J, Capakova Z, Lehocky M, Munster L, Todorović-Marković B, Špitalsky Z. Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents. in ACS Biomaterials Science & Engineering. 2018;4(12):3983-3993.
doi:10.1021/acsbiomaterials.8b00582 .
Kovačova, Maria, Marković, Zoran M., Humpoliček, Petr, Mičušik, Matej, Švajdlenkova, Helena, Kleinova, Angela, Danko, Martin, Kubat, Pavel, Vajdak, Jan, Capakova, Zdenka, Lehocky, Marian, Munster, Lukaš, Todorović-Marković, Biljana, Špitalsky, Zdenko, "Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents" in ACS Biomaterials Science & Engineering, 4, no. 12 (2018):3983-3993,
https://doi.org/10.1021/acsbiomaterials.8b00582 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB