VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity

Authorized Users Only
2018
Authors
Božić, Bojana
Korać, Jelena
Stanković, Dalibor M.
Stanić, Marina
Romanović, Mima Č.
Bogdanović-Pristov, Jelena
Spasić, Snežana D.
Popović-Bijelić, Ana D.
Spasojević, Ivan
Bajčetić, Milica
Article (Published version)
,
© 2018 Elsevier Inc
Metadata
Show full item record
Abstract
An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight β-lactam antibiotics using UV–Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These β-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1:1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecula...r oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis. © 2018 Elsevier Inc.

Keywords:
Antibiotic / Complex / Copper / EPR spectroscopy / Free radicals
Source:
Free Radical Biology and Medicine, 2018, 129, 279-285
Funding / projects:
  • Strengthening of the MagBioVin Research and Innovation Team for Development of Novel Approaches for Tumour Therapy based on Nanostructured Materials (EU-621375)
  • Molecular mechanisms of redox signalling in homeostasis: adaptation and pathology (RS-173014)
  • Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering (RS-173017)

DOI: 10.1016/j.freeradbiomed.2018.09.038

ISSN: 0891-5849; 1873-4596

PubMed: 30267756

WoS: 000450298400026

Scopus: 2-s2.0-85054184646
[ Google Scholar ]
8
4
URI
https://linkinghub.elsevier.com/retrieve/pii/S0891584918311213
https://vinar.vin.bg.ac.rs/handle/123456789/7896
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Božić, Bojana
AU  - Korać, Jelena
AU  - Stanković, Dalibor M.
AU  - Stanić, Marina
AU  - Romanović, Mima Č.
AU  - Bogdanović-Pristov, Jelena
AU  - Spasić, Snežana D.
AU  - Popović-Bijelić, Ana D.
AU  - Spasojević, Ivan
AU  - Bajčetić, Milica
PY  - 2018
UR  - https://linkinghub.elsevier.com/retrieve/pii/S0891584918311213
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7896
AB  - An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight β-lactam antibiotics using UV–Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These β-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1:1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis. © 2018 Elsevier Inc.
T2  - Free Radical Biology and Medicine
T1  - Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity
VL  - 129
SP  - 279
EP  - 285
DO  - 10.1016/j.freeradbiomed.2018.09.038
ER  - 
@article{
author = "Božić, Bojana and Korać, Jelena and Stanković, Dalibor M. and Stanić, Marina and Romanović, Mima Č. and Bogdanović-Pristov, Jelena and Spasić, Snežana D. and Popović-Bijelić, Ana D. and Spasojević, Ivan and Bajčetić, Milica",
year = "2018",
abstract = "An increase in the copper pool in body fluids has been related to a number of pathological conditions, including infections. Copper ions may affect antibiotics via the formation of coordination bonds and/or redox reactions. Herein, we analyzed the interactions of Cu2+ with eight β-lactam antibiotics using UV–Vis spectrophotometry, EPR spectroscopy, and electrochemical methods. Penicillin G did not show any detectable interactions with Cu2+. Ampicillin, amoxicillin and cephalexin formed stable colored complexes with octahedral coordination environment of Cu2+ with tetragonal distortion, and primary amine group as the site of coordinate bond formation. These β-lactams increased the solubility of Cu2+ in the phosphate buffer. Ceftazidime and Cu2+ formed a complex with a similar geometry and gave rise to an organic radical. Ceftriaxone-Cu2+ complex appears to exhibit different geometry. All complexes showed 1:1 stoichiometry. Cefaclor reduced Cu2+ to Cu1+ that further reacted with molecular oxygen to produce hydrogen peroxide. Finally, meropenem underwent degradation in the presence of copper. The analysis of activity against Escherichia coli and Staphylococcus aureus showed that the effects of meropenem, amoxicillin, ampicillin, and ceftriaxone were significantly hindered in the presence of copper ions. The interactions with copper ions should be taken into account regarding the problem of antibiotic resistance and in the selection of the most efficient antimicrobial therapy for patients with altered copper homeostasis. © 2018 Elsevier Inc.",
journal = "Free Radical Biology and Medicine",
title = "Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity",
volume = "129",
pages = "279-285",
doi = "10.1016/j.freeradbiomed.2018.09.038"
}
Božić, B., Korać, J., Stanković, D. M., Stanić, M., Romanović, M. Č., Bogdanović-Pristov, J., Spasić, S. D., Popović-Bijelić, A. D., Spasojević, I.,& Bajčetić, M.. (2018). Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity. in Free Radical Biology and Medicine, 129, 279-285.
https://doi.org/10.1016/j.freeradbiomed.2018.09.038
Božić B, Korać J, Stanković DM, Stanić M, Romanović MČ, Bogdanović-Pristov J, Spasić SD, Popović-Bijelić AD, Spasojević I, Bajčetić M. Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity. in Free Radical Biology and Medicine. 2018;129:279-285.
doi:10.1016/j.freeradbiomed.2018.09.038 .
Božić, Bojana, Korać, Jelena, Stanković, Dalibor M., Stanić, Marina, Romanović, Mima Č., Bogdanović-Pristov, Jelena, Spasić, Snežana D., Popović-Bijelić, Ana D., Spasojević, Ivan, Bajčetić, Milica, "Coordination and redox interactions of β-lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity" in Free Radical Biology and Medicine, 129 (2018):279-285,
https://doi.org/10.1016/j.freeradbiomed.2018.09.038 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB