VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH

Thumbnail
2018
bitstream_5113.pdf (6.107Mb)
Authors
Korać, Jelena
Stanković, Dalibor M.
Stanić, Marina
Bajuk-Bogdanović, Danica V.
Žižić, Milan
Bogdanović-Pristov, Jelena
Grgurić-Šipka, Sanja
Popović-Bijelić, Ana D.
Spasojević, Ivan
Article (Published version)
Metadata
Show full item record
Abstract
Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a pl...ausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.

Source:
Scientific Reports, 2018, 8, 3530-
Funding / projects:
  • Study of structure-function relationships in the plant cell wall and modifications of the wall structure by enzyme engineering (RS-173017)
  • Strengthening of the MagBioVin Research and Innovation Team for Development of Novel Approaches for Tumour Therapy based on Nanostructured Materials (EU-621375)

DOI: 10.1038/s41598-018-21940-7

ISSN: 2045-2322

PubMed: 29476145

WoS: 000425934200018

Scopus: 2-s2.0-85042549576
[ Google Scholar ]
6
7
URI
https://vinar.vin.bg.ac.rs/handle/123456789/7582
Collections
  • WoS Import
Institution/Community
Vinča
TY  - JOUR
AU  - Korać, Jelena
AU  - Stanković, Dalibor M.
AU  - Stanić, Marina
AU  - Bajuk-Bogdanović, Danica V.
AU  - Žižić, Milan
AU  - Bogdanović-Pristov, Jelena
AU  - Grgurić-Šipka, Sanja
AU  - Popović-Bijelić, Ana D.
AU  - Spasojević, Ivan
PY  - 2018
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/7582
AB  - Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.
T2  - Scientific Reports
T1  - Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH
VL  - 8
SP  - 3530
DO  - 10.1038/s41598-018-21940-7
ER  - 
@article{
author = "Korać, Jelena and Stanković, Dalibor M. and Stanić, Marina and Bajuk-Bogdanović, Danica V. and Žižić, Milan and Bogdanović-Pristov, Jelena and Grgurić-Šipka, Sanja and Popović-Bijelić, Ana D. and Spasojević, Ivan",
year = "2018",
abstract = "Coordinate and redox interactions of epinephrine (Epi) with iron at physiological pH are essential for understanding two very different phenomena - the detrimental effects of chronic stress on the cardiovascular system and the cross-linking of catecholamine-rich biopolymers and frameworks. Here we show that Epi and Fe3+ form stable high-spin complexes in the 1:1 or 3:1 stoichiometry, depending on the Epi/Fe3+ concentration ratio (low or high). Oxygen atoms on the catechol ring represent the sites of coordinate bond formation within physiologically relevant bidentate 1:1 complex. Redox properties of Epi are slightly impacted by Fe3+. On the other hand, Epi and Fe2+ form a complex that acts as a strong reducing agent, which leads to the production of hydrogen peroxide via O-2 reduction, and to a facilitated formation of the Epi-Fe3+ complexes. Epi is not oxidized in this process, i.e. Fe2+ is not an electron shuttle, but the electron donor. Epi-catalyzed oxidation of Fe2+ represents a plausible chemical basis of stress-related damage to heart cells. In addition, our results support the previous findings on the interactions of catecholamine moieties in polymers with iron and provide a novel strategy for improving the efficiency of cross-linking.",
journal = "Scientific Reports",
title = "Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH",
volume = "8",
pages = "3530",
doi = "10.1038/s41598-018-21940-7"
}
Korać, J., Stanković, D. M., Stanić, M., Bajuk-Bogdanović, D. V., Žižić, M., Bogdanović-Pristov, J., Grgurić-Šipka, S., Popović-Bijelić, A. D.,& Spasojević, I.. (2018). Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. in Scientific Reports, 8, 3530.
https://doi.org/10.1038/s41598-018-21940-7
Korać J, Stanković DM, Stanić M, Bajuk-Bogdanović DV, Žižić M, Bogdanović-Pristov J, Grgurić-Šipka S, Popović-Bijelić AD, Spasojević I. Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. in Scientific Reports. 2018;8:3530.
doi:10.1038/s41598-018-21940-7 .
Korać, Jelena, Stanković, Dalibor M., Stanić, Marina, Bajuk-Bogdanović, Danica V., Žižić, Milan, Bogdanović-Pristov, Jelena, Grgurić-Šipka, Sanja, Popović-Bijelić, Ana D., Spasojević, Ivan, "Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH" in Scientific Reports, 8 (2018):3530,
https://doi.org/10.1038/s41598-018-21940-7 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB