ВинаР - Репозиторијум Института за нуклеарне науке Винча
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ВинаР
  • Vinča
  • WoS Import
  • Преглед записа
  •   ВинаР
  • Vinča
  • WoS Import
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantifying self-organization with optimal wavelets

Нема приказа
Аутори
Milovanović, Miloš
Rajković, Milan
Чланак у часопису (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
An optimal wavelet basis is used to develop a quantitative, experimentally applicable criterion for self-organization. The choice of the optimal wavelet is based on the model of selforganization in the wavelet tree. The framework of the model is founded on the wavelet-domain hidden Markov model and the optimal wavelet basis criterion for self-organization. The principle assumes increase in statistical complexity considered as the information content necessary for maximally accurate prediction of the systems dynamics. The causal states and the wavelet machine (w-machine) are defined in analogy with the epsilon-machine constructed as the unique, minimal, predictive model of the process. The method, presented here for the one-dimensional data, concurrently performs superior denoising and may be easily generalized to higher dimensions. Copyright (C) EPLA, 2013
Извор:
Europhysics Letters / EPL, 2013, 102, 4
Финансирање / пројекти:
  • Напредне аналитичке, нумеричке и методе анализе примењене механике флуида и комплексних система (RS-MESTD-Basic Research (BR or ON)-174014)
  • Развој нових информационо-комуникационих технологија, коришћењем напредних математичких метода, са применама у медицини, телекомуникацијама, енергетици, заштитити националне баштине и образовању (RS-MESTD-Integrated and Interdisciplinary Research (IIR or III)-44006)

DOI: 10.1209/0295-5075/102/40004

ISSN: 0295-5075; 1286-4854

WoS: 000321118600005

Scopus: 2-s2.0-84880521324
[ Google Scholar ]
9
9
URI
https://vinar.vin.bg.ac.rs/handle/123456789/5569
Колекције
  • WoS Import
Институција/група
Vinča
TY  - JOUR
AU  - Milovanović, Miloš
AU  - Rajković, Milan
PY  - 2013
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/5569
AB  - An optimal wavelet basis is used to develop a quantitative, experimentally applicable criterion for self-organization. The choice of the optimal wavelet is based on the model of selforganization in the wavelet tree. The framework of the model is founded on the wavelet-domain hidden Markov model and the optimal wavelet basis criterion for self-organization. The principle assumes increase in statistical complexity considered as the information content necessary for maximally accurate prediction of the systems dynamics. The causal states and the wavelet machine (w-machine) are defined in analogy with the epsilon-machine constructed as the unique, minimal, predictive model of the process. The method, presented here for the one-dimensional data, concurrently performs superior denoising and may be easily generalized to higher dimensions. Copyright (C) EPLA, 2013
T2  - Europhysics Letters / EPL
T1  - Quantifying self-organization with optimal wavelets
VL  - 102
IS  - 4
DO  - 10.1209/0295-5075/102/40004
ER  - 
@article{
author = "Milovanović, Miloš and Rajković, Milan",
year = "2013",
abstract = "An optimal wavelet basis is used to develop a quantitative, experimentally applicable criterion for self-organization. The choice of the optimal wavelet is based on the model of selforganization in the wavelet tree. The framework of the model is founded on the wavelet-domain hidden Markov model and the optimal wavelet basis criterion for self-organization. The principle assumes increase in statistical complexity considered as the information content necessary for maximally accurate prediction of the systems dynamics. The causal states and the wavelet machine (w-machine) are defined in analogy with the epsilon-machine constructed as the unique, minimal, predictive model of the process. The method, presented here for the one-dimensional data, concurrently performs superior denoising and may be easily generalized to higher dimensions. Copyright (C) EPLA, 2013",
journal = "Europhysics Letters / EPL",
title = "Quantifying self-organization with optimal wavelets",
volume = "102",
number = "4",
doi = "10.1209/0295-5075/102/40004"
}
Milovanović, M.,& Rajković, M.. (2013). Quantifying self-organization with optimal wavelets. in Europhysics Letters / EPL, 102(4).
https://doi.org/10.1209/0295-5075/102/40004
Milovanović M, Rajković M. Quantifying self-organization with optimal wavelets. in Europhysics Letters / EPL. 2013;102(4).
doi:10.1209/0295-5075/102/40004 .
Milovanović, Miloš, Rajković, Milan, "Quantifying self-organization with optimal wavelets" in Europhysics Letters / EPL, 102, no. 4 (2013),
https://doi.org/10.1209/0295-5075/102/40004 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB