VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative Analysis of Different Methods for Graphene Nanoribbon Synthesis

Thumbnail
2013
5423.pdf (413.1Kb)
Authors
Tošić, Dragana
Marković, Zoran M.
Jovanović, Svetlana P.
Milosavljević, Momir
Todorović-Marković, Biljana
Article
Metadata
Show full item record
Abstract
Graphene nanoribbons (GNRs) are thin strips of graphene that have captured the interest of scientists due to their unique structure and promising applications in electronics. This paper presents the results of a comparative analysis of morphological properties of graphene nanoribbons synthesized by different methods. Various methods have been reported for graphene nanoribons synthesis. Lithography methods usually include electron-beam (e-beam) lithography, atomic force microscopy (AFM) lithography, and scanning tunnelling microscopy (STM) lithography. Sonochemical and chemical methods exist as well, namely chemical vapour deposition (CVD) and anisotropic etching. Graphene nanoribbons can also be fabricated from unzipping carbon nanotubes (CNTs). We propose a new highly efficient method for graphene nanoribbons production by gamma irradiation of graphene dispersed in cyclopentanone (CPO). Surface morphology of graphene nanoribbons was visualized with atomic force and transmission electr...on microscopy. It was determined that dimensions of graphene nanoribbons are inversely proportional to applied gamma irradiation dose. It was established that the narrowest nanoribbons were 10-20 nm wide and 1 nm high with regular and smooth edges. In comparison to other synthesis methods, dimensions of graphene nanoribbons synthesized by gamma irradiation are slightly larger, but the yield of nanoribbons is much higher. Fourier transform infrared spectroscopy was used for structural analysis of graphene nanoribbons. Results of photoluminescence spectroscopy revealed for the first time that synthesized nanoribbons showed photoluminescence in the blue region of visible light in contrast to graphene nanoribbons synthesized by other methods. Based on disclosed facts, we believe that our synthesis method has good prospects for potential future mass production of graphene nanoribbons with uniform size, as well as for future investigations of carbon nanomaterials for applications in optoelectronics and biological labeling.

Keywords:
Graphene nanoribbons / Gamma irradiation / AFM / Photoluminescence / Comparative analysis
Source:
Hemijska industrija, 2013, 67, 1, 147-156
Projects:
  • Thin films of single wall carbon nanotubes and graphene for electronic application (RS-172003)

DOI: 10.2298/HEMIND120403056T

ISSN: 0367-598X

WoS: 000317808000017

Scopus: 2-s2.0-84875009121
[ Google Scholar ]
1
URI
http://vinar.vin.bg.ac.rs/handle/123456789/5427
Collections
  • WoS Import
Institution
Vinča

DSpace software copyright © 2002-2015  DuraSpace
About VinaR - Repository of the Vinča Institute of Nuclear Sciences | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About VinaR - Repository of the Vinča Institute of Nuclear Sciences | Send Feedback

OpenAIRERCUB