Show simple item record

dc.creatorJovanović, Željka
dc.creatorRadosavljević, Aleksandra
dc.creatorKačarević-Popović, Zorica M.
dc.creatorStojkovska, Jasmina
dc.creatorPerić-Grujić, Aleksandra A.
dc.creatorRistić, Mirjana
dc.creatorMatić, Ivana Z.
dc.creatorJuranic, Zorica D.
dc.creatorObradovic, Bojana
dc.creatorMiskovic-Stankovic, Vesna
dc.identifier.issn0927-7765 (print)
dc.description.abstractSilver/poly(N-vinyl-2-pyrrolidone) (Ag/PVP) nanocomposites containing Ag nanoparticles at different concentrations were synthesized using gamma-irradiation. Cytotoxicity of the obtained nanocomposites was determined by MU assay in monolayer cultures of normal human immunocompetent peripheral blood mononuclear cells (PBMC) that were either non-stimulated or stimulated to proliferate by mitogen phytohemagglutinin (PHA), as well as in human cervix adenocarcinoma cell (HeLa) cultures. Silver release kinetics and mechanical properties of nanocomposites were investigated under bioreactor conditions in the simulated body fluid (SBF) at 37 degrees C. The release of silver was monitored under static conditions, and in two types of bioreactors: perfusion bioreactors and a bioreactor with dynamic compression coupled with SBF perfusion simulating in vivo conditions in articular cartilage. Ag/PVP nanocomposites exhibited slight cytotoxic effects against PBMC at the estimated concentration of 0.4 mu mol dm(-3), with negligible variations observed amongst different cell cultures investigated. Studies of the silver release kinetics indicated internal diffusion as the rate limiting step, determined by statistically comparable results obtained at all investigated conditions. However, silver release rate was slightly higher in the bioreactor with dynamic compression coupled with SBF perfusion as compared to the other two systems indicating the influence of dynamic compression. Modelling of silver release kinetics revealed potentials for optimization of Ag/PVP nanocomposites for particular applications as wound dressings or soft tissue implants. (C) 2013 Elsevier B.V. All rights reserved.en
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45019/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Integrated and Interdisciplinary Research (IIR or III)/45005/RS//
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/175011/RS//
dc.relationInternational Atomic Energy Agency, Vienna [CRP: F23028, 15384]
dc.sourceColloids and Surfaces. B: Biointerfacesen
dc.subjectSilver nanoparticlesen
dc.subjectIn vitro cytotoxicityen
dc.subjectSilver release kineticsen
dc.subjectBioreactor conditionsen
dc.titleBioreactor validation and biocompatibility of Ag/poly(N-vinyl-2-pyrrolidone) hydrogel nanocompositesen
dcterms.abstractЈовановиц, Зељка; Стојковска, Јасмина; Јураниц, Зорица Д.; Ристиц, Мирјана; Периц-Грујиц, Aлександра; Мисковиц-Станковиц, Весна; Обрадовиц, Бојана; Матиц, Ивана З.; Радосављевић Aлександра; Качаревић-Поповић Зорица М;

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record