dc.creator Cvijović, Đurđe dc.date.accessioned 2018-03-01T20:08:35Z dc.date.available 2018-03-01T20:08:35Z dc.date.issued 2009 dc.identifier.issn 0893-9659 (print) dc.identifier.uri http://vinar.vin.bg.ac.rs/handle/123456789/3246 dc.description.abstract By elementary arguments, we deduce closed-form expressions for the values of all derivatives of the cotangent function at rational multiples of pi. These formulae are considerably simpler than Similar ones which were found in a different manner by Kolbig. Also, we show that the values of cot((n))(pi x), n epsilon N, at x = 1/2, 1/3, 2/3, 1/4, 3/4, 1/6 and 5/6 are expressible in terms of the values of the Bernoulli polynomials alone. (C) 2008 Elsevier Ltd. All rights reserved. en dc.relation Ministry of Science and Environmental Protection of the Republic of Serbia [142025] dc.rights openAccess en dc.source Applied Mathematics Letters en dc.subject Cotangent function en dc.subject Simpsons series multisection formula en dc.subject Bernoulli polynomials en dc.subject Bernoulli numbers en dc.subject Hurwitz zeta function en dc.subject Polylogarithm en dc.title Values of the derivatives of the cotangent at rational multiples of pi en dc.type article en dcterms.abstract Цвијовић Ђурђе; dc.citation.volume 22 dc.citation.issue 2 dc.citation.spage 217 dc.citation.epage 220 dc.identifier.wos 000262219200014 dc.identifier.doi 10.1016/j.aml.2008.03.013 dc.citation.rank M22 dc.identifier.scopus 2-s2.0-56949101674 dc.identifier.fulltext http://vinar.vin.bg.ac.rs//bitstream/id/12417/3242.pdf
﻿