VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of air kerma area product and air kerma meter calibrations for X-ray radiation qualities used in diagnostic radiology

No Thumbnail
Authors
Hourdakis, Constantine J.
Csete, I.
Daures, J.
Jarvinen, Hannu
Mihailescu, L-C
Sochor, V.
Novak, L.
Pedersen, M.
Kosunen, A.
Toroi, P.
Denoziere, M.
Buermann, L.
Megzifene, A.
Einarsson, G.
Ferrari, P.
dePooter, J.
Bjerke, H.
Brodecki, M.
Cardoso, J.
Bercea, S.
Ciraj-Bjelac, Olivera
Compel, J.
Glavič-Cindro, Denis
Ginjaume, Merce
Persson, L.
Grindborg, J-E
Contribution To Periodical
Metadata
Show full item record
Abstract
The EURAMET #1177 project, identified as EURAMET RI(I)-S9 comparison, was the first EURAMET wide scale supplementary comparison in the field of diagnostic radiology for air kerma area product, P-KA, and air kerma, K. It was conducted with the goal of testing the measurement and calibration capabilities for P-KA and K, as well as of supporting the relevant CMCs of the participating laboratories. Two commercial KAP meters and an ionization chamber were selected as transfer instruments and circulated between the 22 European participants. The measurements were performed from April 2011 until July 2012. The stability and the performance of the transfer instruments were tested by the pilot laboratory (IRCL/GAEC-EIM) and few other laboratories as well. The test results revealed that the energy (radiation quality), Q, irradiation area, A, and air kerma rate, K dependences of response of the transfer KAP meters influence the comparison of the results when different measurement conditions were p...ertained and therefore, appropriate correction factors were obtained and applied to the reported calibration results of the laboratories, when necessary. The comparison reference values (CRVs) for each instrument were determined as the weighted mean of the calibration coefficients of the three participating primary laboratories. The relative standard uncertainty of the CRVs were in the range of (0.4-1.6)% depending on the transfer instruments and beam qualities. The comparison result as the ratio of the corrected calibration coefficient of participant and the respective CRV, and its uncertainty were calculated for all beam qualities and transfer instruments. The informative degrees of equivalence (DoE) were calculated for the refrence RQR 5 beam quality. In case of air kema area product measurements the results for the RADCAL PDC KAP meter were used. The 216 KAP meter calibration results of the two different transfer instruments in terms of air kerma area product were consistent within 5% except 40 results of 8 participants. The 103 air kerma calibration results were consistent within 1.7%, except 10 results of 4 participants.

Source:
Metrologia, 2015, 52

DOI: 10.1088/0026-1394/52/1A/06024

ISSN: 0026-1394; 1681-7575

WoS: 000210162800073

[ Google Scholar ]
1
URI
http://vinar.vin.bg.ac.rs/handle/123456789/2749
Collections
  • WoS Import
Institution
Vinča
TY  - JOUR
AU  - Hourdakis, Constantine J.
AU  - Csete, I.
AU  - Daures, J.
AU  - Jarvinen, Hannu
AU  - Mihailescu, L-C
AU  - Sochor, V.
AU  - Novak, L.
AU  - Pedersen, M.
AU  - Kosunen, A.
AU  - Toroi, P.
AU  - Denoziere, M.
AU  - Buermann, L.
AU  - Megzifene, A.
AU  - Einarsson, G.
AU  - Ferrari, P.
AU  - dePooter, J.
AU  - Bjerke, H.
AU  - Brodecki, M.
AU  - Cardoso, J.
AU  - Bercea, S.
AU  - Ciraj-Bjelac, Olivera
AU  - Compel, J.
AU  - Glavič-Cindro, Denis
AU  - Ginjaume, Merce
AU  - Persson, L.
AU  - Grindborg, J-E
PY  - 2015
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/2749
AB  - The EURAMET #1177 project, identified as EURAMET RI(I)-S9 comparison, was the first EURAMET wide scale supplementary comparison in the field of diagnostic radiology for air kerma area product, P-KA, and air kerma, K. It was conducted with the goal of testing the measurement and calibration capabilities for P-KA and K, as well as of supporting the relevant CMCs of the participating laboratories. Two commercial KAP meters and an ionization chamber were selected as transfer instruments and circulated between the 22 European participants. The measurements were performed from April 2011 until July 2012. The stability and the performance of the transfer instruments were tested by the pilot laboratory (IRCL/GAEC-EIM) and few other laboratories as well. The test results revealed that the energy (radiation quality), Q, irradiation area, A, and air kerma rate, K dependences of response of the transfer KAP meters influence the comparison of the results when different measurement conditions were pertained and therefore, appropriate correction factors were obtained and applied to the reported calibration results of the laboratories, when necessary. The comparison reference values (CRVs) for each instrument were determined as the weighted mean of the calibration coefficients of the three participating primary laboratories. The relative standard uncertainty of the CRVs were in the range of (0.4-1.6)% depending on the transfer instruments and beam qualities. The comparison result as the ratio of the corrected calibration coefficient of participant and the respective CRV, and its uncertainty were calculated for all beam qualities and transfer instruments. The informative degrees of equivalence (DoE) were calculated for the refrence RQR 5 beam quality. In case of air kema area product measurements the results for the RADCAL PDC KAP meter were used. The 216 KAP meter calibration results of the two different transfer instruments in terms of air kerma area product were consistent within 5% except 40 results of 8 participants. The 103 air kerma calibration results were consistent within 1.7%, except 10 results of 4 participants.
T2  - Metrologia
T1  - Comparison of air kerma area product and air kerma meter calibrations for X-ray radiation qualities used in diagnostic radiology
VL  - 52
DO  - 10.1088/0026-1394/52/1A/06024
ER  - 
@article{
author = "Hourdakis, Constantine J. and Csete, I. and Daures, J. and Jarvinen, Hannu and Mihailescu, L-C and Sochor, V. and Novak, L. and Pedersen, M. and Kosunen, A. and Toroi, P. and Denoziere, M. and Buermann, L. and Megzifene, A. and Einarsson, G. and Ferrari, P. and dePooter, J. and Bjerke, H. and Brodecki, M. and Cardoso, J. and Bercea, S. and Ciraj-Bjelac, Olivera and Compel, J. and Glavič-Cindro, Denis and Ginjaume, Merce and Persson, L. and Grindborg, J-E",
year = "2015",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/2749",
abstract = "The EURAMET #1177 project, identified as EURAMET RI(I)-S9 comparison, was the first EURAMET wide scale supplementary comparison in the field of diagnostic radiology for air kerma area product, P-KA, and air kerma, K. It was conducted with the goal of testing the measurement and calibration capabilities for P-KA and K, as well as of supporting the relevant CMCs of the participating laboratories. Two commercial KAP meters and an ionization chamber were selected as transfer instruments and circulated between the 22 European participants. The measurements were performed from April 2011 until July 2012. The stability and the performance of the transfer instruments were tested by the pilot laboratory (IRCL/GAEC-EIM) and few other laboratories as well. The test results revealed that the energy (radiation quality), Q, irradiation area, A, and air kerma rate, K dependences of response of the transfer KAP meters influence the comparison of the results when different measurement conditions were pertained and therefore, appropriate correction factors were obtained and applied to the reported calibration results of the laboratories, when necessary. The comparison reference values (CRVs) for each instrument were determined as the weighted mean of the calibration coefficients of the three participating primary laboratories. The relative standard uncertainty of the CRVs were in the range of (0.4-1.6)% depending on the transfer instruments and beam qualities. The comparison result as the ratio of the corrected calibration coefficient of participant and the respective CRV, and its uncertainty were calculated for all beam qualities and transfer instruments. The informative degrees of equivalence (DoE) were calculated for the refrence RQR 5 beam quality. In case of air kema area product measurements the results for the RADCAL PDC KAP meter were used. The 216 KAP meter calibration results of the two different transfer instruments in terms of air kerma area product were consistent within 5% except 40 results of 8 participants. The 103 air kerma calibration results were consistent within 1.7%, except 10 results of 4 participants.",
journal = "Metrologia",
title = "Comparison of air kerma area product and air kerma meter calibrations for X-ray radiation qualities used in diagnostic radiology",
volume = "52",
doi = "10.1088/0026-1394/52/1A/06024"
}
Hourdakis CJ, Csete I, Daures J, Jarvinen H, Mihailescu L, Sochor V, Novak L, Pedersen M, Kosunen A, Toroi P, Denoziere M, Buermann L, Megzifene A, Einarsson G, Ferrari P, dePooter J, Bjerke H, Brodecki M, Cardoso J, Bercea S, Ciraj-Bjelac O, Compel J, Glavič-Cindro D, Ginjaume M, Persson L, Grindborg J. Comparison of air kerma area product and air kerma meter calibrations for X-ray radiation qualities used in diagnostic radiology. Metrologia. 2015;52
Hourdakis, C. J., Csete, I., Daures, J., Jarvinen, H., Mihailescu, L., Sochor, V., Novak, L., Pedersen, M., Kosunen, A., Toroi, P., Denoziere, M., Buermann, L., Megzifene, A., Einarsson, G., Ferrari, P., dePooter, J., Bjerke, H., Brodecki, M., Cardoso, J., Bercea, S., Ciraj-Bjelac, O., Compel, J., Glavič-Cindro, D., Ginjaume, M., Persson, L.,& Grindborg, J. (2015). Comparison of air kerma area product and air kerma meter calibrations for X-ray radiation qualities used in diagnostic radiology.
Metrologia, 52.
https://doi.org/10.1088/0026-1394/52/1A/06024
Hourdakis Constantine J., Csete I., Daures J., Jarvinen Hannu, Mihailescu L-C, Sochor V., Novak L., Pedersen M., Kosunen A., Toroi P., Denoziere M., Buermann L., Megzifene A., Einarsson G., Ferrari P., dePooter J., Bjerke H., Brodecki M., Cardoso J., Bercea S., Ciraj-Bjelac Olivera, Compel J., Glavič-Cindro Denis, Ginjaume Merce, Persson L., Grindborg J-E, "Comparison of air kerma area product and air kerma meter calibrations for X-ray radiation qualities used in diagnostic radiology" 52 (2015),
https://doi.org/10.1088/0026-1394/52/1A/06024 .

DSpace software copyright © 2002-2015  DuraSpace
About VinaR - Repository of the Vinča Institute of Nuclear Sciences | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About VinaR - Repository of the Vinča Institute of Nuclear Sciences | Send Feedback

OpenAIRERCUB