Show simple item record

dc.creatorNakamura, I
dc.creatorDmitrasinovic, V
dc.identifier.issn0375-9474 (print)
dc.description.abstractWe show an explicit connection between the solution to the equations of motion in the Gaussian functional approximation [I. Nakamura, V. Dmitrasinovic, Prog. Theor. Phys. 106 (2001) 11951 and the minimum of the (Gaussian) effective potential/action of the linear Sigma model, as well as with the N/D method in dispersion theory. The resulting equations contain analytic functions with branch cuts in the complex mass squared plane. Therefore the minimum of the effective action may lie in the complex mass squared plane. Many solutions to these equations can be found on the second, third, etc. Riemann sheets of the equation, though their physical interpretation is not clear. Our results and the established properties of the S-matrix in general, and of the N/D solutions in particular, guide us to the correct choice of the Riemann sheet. We count the number of states and find only one in each spin-parity and isospin channel with quantum numbers corresponding to the fields in the Lagrangian, i.e., to Castillejo-Dalitz-Dyson (CDD) poles. We examine the numerical solutions in both the strong and weak coupling regimes and calculate the Kallen-Lehmann spectral densities and then use them for physical interpretation. (C) 2002 Elsevier Science B.V. All rights reserved.en
dc.sourceNuclear Physics Aen
dc.titleLinear Sigma model in the Gaussian wave functional approximation II: analyticity of the S-matrix and the effective potential/actionen
dcterms.abstractНакамура, И; Дмитрасиновиц, В;
dc.citation.otherArticle Number: PII S0375-9474(02)01293-9

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record