VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interstitial hydrogen in Laves phases - local electronic structure modifications from first-principles

No Thumbnail
Authors
Radaković, Jana
Batalović, Katarina
Mađarević, Ivan
Belošević-Čavor, Jelena
Article
Metadata
Show full item record
Abstract
Understanding the microscopic aspect of the hydride formation process provides an insight into the experimentally observed properties of prospective hydrogen storage materials. In this paper, we have studied the local structural and electronic modifications induced by hydrogen absorption in cubic C15 Laves phases AB(2) (A = Zr; B = Cr, Mn, Ni), as well as the stability of the formed hydrides, by means of density functional theory (DFT). To address the effect of hydrogen absorbed in one of three tetrahedral sites (96g, 32e, and 8b) on the electronic structure of its surrounding atoms, we have calculated the electric field gradient (EFG) on the position of Cr, Mn, and Ni in pure and hydrogenated compounds. EFG is associated with the hydrogen site-preference, and formation enthalpies of ZrB2H hydrides are used to examine their formation feasibility. Obtained enthalpies reveal that ZrMn2H and ZrNi2H are both unstable regardless of the occupied site, and the only attainable hydride is ZrCr2...H, with comparable occupational probability of sites 96g and 32e. EFG results indicate that a hydrogen distribution within the crystal depends on the level of induced electronic structure modifications; i.e., the hydrogen site-preference is governed by the condition of minimal divergence of the electronic charge from its initial distribution.

Source:
RSC Advances, 2014, 4, 97, 54769-54774
Projects:
  • Investigation of intermetallics and semiconductors and possible application in renewable energy sources (RS-171001)
  • LNEG institute in Lisbon, Portugal [451-03-02328/2012-14/04]

DOI: 10.1039/c4ra09082a

ISSN: 2046-2069

WoS: 000344600400079

Scopus: 2-s2.0-84908518115
[ Google Scholar ]
4
4
URI
http://vinar.vin.bg.ac.rs/handle/123456789/194
Collections
  • WoS Import
Institution
Vinča

DSpace software copyright © 2002-2015  DuraSpace
About VinaR - Repository of the Vinča Institute of Nuclear Sciences | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About VinaR - Repository of the Vinča Institute of Nuclear Sciences | Send Feedback

OpenAIRERCUB