VinaR - Repozitorijum Instituta za nuklearne nauke Vinča
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled rada 
  •   VinaR
  • Vinča
  • WoS Import
  • Pregled rada
  •   VinaR
  • Vinča
  • WoS Import
  • Pregled rada
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanoporous activated carbon cloth as a versatile material for hydrogen adsorption, selective gas separation and electrochemical energy storage

Samo za registrovane korisnike
2017
Autori
Kostoglou, Nikolaos
Koczwara, Christian
Prehal, Christian
Terziyska, Velislava
Babić, Biljana M.
Matović, Branko
Constantinides, Georgios
Tampaxis, Christos
Charalambopoulou, Georgia
Steriotis, Theodore
Hinder, Steve
Baker, Mark
Polychronopoulou, Kyriaki
Doumanidis, Charalabos
Paris, Oskar
Mitterer, Christian
Rebholz, Claus
Članak u časopisu
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
The efficient storage of energy combined with a minimum carbon footprint is still considered one of the major challenges towards the transition to a progressive, sustainable and environmental friendly society on a global scale. The energy storage in pure chemical form using gas carriers with high heating values, including H-2 and CH4, as well as via electrochemical means using state-of-the-art devices, such as batteries or supercapacitors, are two of the most attractive alternatives for the combustion of finite, carbon-rich and environmentally harmful fossil fuels, such as diesel and gasoline. A few-step, reproducible and scalable method is presented in this study for the preparation of an ultra-microporous (average pore size around 0.6 nm) activated carbon cloth (ACC) with large specific area ( GT 1200 m(2)/g) and pore volume (similar to 0.5 cm(3)/g) upon combining chemical impregnation, carbonization and CO2 activation of a low-cost cellulose-based polymeric fabric. The ACC material ...shows a versatile character towards three different applications, including H2 storage via cryo-adsorption, separation of energy-dense CO2/CH4 mixtures via selective adsorption and electrochemical energy storage using super-capacitor technology. Fully reversible H-2 uptake capacities in excess of 3.1 wt% at 77 K and similar to 72 bar along with a significant heat of adsorption value of up to 8.4 kJ/mol for low surface coverage have been found. Upon incorporation of low-pressure sorption data in the ideal adsorbed solution theory model, the ACC is predicted to selectively adsorb about 4.5 times more CO2 than CH4 in ambient conditions and thus represents an appealing adsorbent for the purification of such gaseous mixtures. Finally, an electric double-layer capacitor device was assembled and tested for its electrochemical performance, constructed of binder-free and flexible ACC electrodes and aqueous CsCl electrolyte. The full-cell exhibits a gravimetric capacitance of similar to 121 F/g for a specific current of 0.02 A/g, which relative to the ACCs specific area, is superior to commercially available activated carbons. A capacitance retention of more than 97% was observed after 10,000 charging/discharging cycles, thus indicating the ACCs suitability for demanding and high-performance energy storage on a commercial scale. The enhanced performance in all tested applications seems to be attributed to the mean ultra-micropore size of the ACC material instead of the available specific area and/or pore volume.

Ključne reči:
Activated carbon cloth / Nanoporous material / Adsorption / H-2 storage / CO2/CH4 selectivity / Supercapacitor electrode
Izvor:
Nano Energy, 2017, 40, 49-64
Projekti:
  • H2FC - Integrating European Infrastructure to support science and development of Hydrogen- and Fuel Cell Technologies towards European Strategy for Sustainable, Competitive and Secure Energy (EU-284522)
  • Khalifa University Internal Research Fund, Austrian Klima- und Energiefonds via FFG program Energieforschung (Project: Hybrid Supercap), Montanuniversitat Leoben

DOI: 10.1016/j.nanoen.2017.07.056

ISSN: 2211-2855 (print); 2211-3282 (electronic)

WoS: 000411687800007

Scopus: 2-s2.0-85028031963
[ Google Scholar ]
40
41
URI
http://vinar.vin.bg.ac.rs/handle/123456789/1749
Kolekcije
  • WoS Import
Institucija
Vinča

DSpace software copyright © 2002-2015  DuraSpace
O VinaRu - Repozitorijumu Instituta za nuklearne nauke „Vinča“ | Pošaljite zapažanja

OpenAIRERCUB
 

 

Kompletan repozitorijumInstitucijeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O VinaRu - Repozitorijumu Instituta za nuklearne nauke „Vinča“ | Pošaljite zapažanja

OpenAIRERCUB