VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity

Authorized Users Only
2017
Authors
Đolić, Maja B.
Rajaković-Ognjanović, Vladana N.
Štrbac, Svetlana
Dimitrijević, Suzana I.
Mitrić, Miodrag
Onjia, Antonije E.
Rajaković, Ljubinka V.
Article
Metadata
Show full item record
Abstract
The objective of this study was to investigate the modification of materials used in wastewater treatment for possible antimicrobial application(s). Granulated activated carbon (GAC) and natural clinoptilolite (CLI) were activated using Cu2+-and Zn2+-ions and the disinfection ability of the resulting materials was tested. Studies of the sorption and desorption kinetics were performed in order to determine and clarify the antimicrobial activity of the metal-activated sorbents. The exact sorption capacities of the selected sorbents, GAC and CLI, activated through use of Cu2+-ions, were 15.90 and 3.60 mg/g, respectively, while for the materials activated by Zn2+-ions, the corresponding capacities were 14.00 and 4.72 mg/g,. The desorption rates were 2 and 3 orders of magnitude lower than their sorption efficacy for the Cu2+-, and Zn2+-activated sorbents, respectively. The intermediate sorption capacity and low desorption rate indicated that the overall antimicrobial activity of the metal-m...odified sorbents was a result of metal ions immobilized onto surface sites. The effect of antimicrobial activity of free ions desorbed from the metal-activated surface may thus be disregarded. The antimicrobial activities of Cu/GAC, Zn/GAC, Cu/CLI and Zn/ CLI were also tested against Escherichia coli, Staphylococcus aureus, and Candida albicans. After 15 min exposure, the highest levels of cell inactivation were obtained through the Cu/CLI and the Cu/GAC against E. coli, 100.0 and 98.24%, respectively. However, for S. aureus and yeast cell inactivation, all Cu2+-and Zn2+-activated sorbents proved to be unsatisfactory. A characterization of the sorbents was performed by Xray diffraction (XRD), X-ray photo electron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). A concentration of the adsorbed and released ions was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS). The results showed that the antimicrobial performance of the activated sorbents depended on the surface characteristics of the material, which itself designates the distribution and the bioavailability of the activating agent. (C) 2017 Elsevier B. V. All rights reserved.

Keywords:
Activated sorbent / Antimicrobial activity / E. coli / S. aureus / C. albicans
Source:
New Biotechnology, 2017, 39, 150-159
Projects:
  • Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden (RS-43009)
  • COST-European Cooperation in Science and Technology [1403, 1304]

DOI: 10.1016/j.nbt.2017.03.001

ISSN: 1871-6784; 1876-4347

PubMed: 28263898

WoS: 000410912900018

Scopus: 2-s2.0-85015322654
[ Google Scholar ]
6
5
URI
http://vinar.vin.bg.ac.rs/handle/123456789/1728
Collections
  • WoS Import
Institution
Vinča
TY  - JOUR
AU  - Đolić, Maja B.
AU  - Rajaković-Ognjanović, Vladana N.
AU  - Štrbac, Svetlana
AU  - Dimitrijević, Suzana I.
AU  - Mitrić, Miodrag
AU  - Onjia, Antonije E.
AU  - Rajaković, Ljubinka V.
PY  - 2017
UR  - http://vinar.vin.bg.ac.rs/handle/123456789/1728
AB  - The objective of this study was to investigate the modification of materials used in wastewater treatment for possible antimicrobial application(s). Granulated activated carbon (GAC) and natural clinoptilolite (CLI) were activated using Cu2+-and Zn2+-ions and the disinfection ability of the resulting materials was tested. Studies of the sorption and desorption kinetics were performed in order to determine and clarify the antimicrobial activity of the metal-activated sorbents. The exact sorption capacities of the selected sorbents, GAC and CLI, activated through use of Cu2+-ions, were 15.90 and 3.60 mg/g, respectively, while for the materials activated by Zn2+-ions, the corresponding capacities were 14.00 and 4.72 mg/g,. The desorption rates were 2 and 3 orders of magnitude lower than their sorption efficacy for the Cu2+-, and Zn2+-activated sorbents, respectively. The intermediate sorption capacity and low desorption rate indicated that the overall antimicrobial activity of the metal-modified sorbents was a result of metal ions immobilized onto surface sites. The effect of antimicrobial activity of free ions desorbed from the metal-activated surface may thus be disregarded. The antimicrobial activities of Cu/GAC, Zn/GAC, Cu/CLI and Zn/ CLI were also tested against Escherichia coli, Staphylococcus aureus, and Candida albicans. After 15 min exposure, the highest levels of cell inactivation were obtained through the Cu/CLI and the Cu/GAC against E. coli, 100.0 and 98.24%, respectively. However, for S. aureus and yeast cell inactivation, all Cu2+-and Zn2+-activated sorbents proved to be unsatisfactory. A characterization of the sorbents was performed by Xray diffraction (XRD), X-ray photo electron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). A concentration of the adsorbed and released ions was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS). The results showed that the antimicrobial performance of the activated sorbents depended on the surface characteristics of the material, which itself designates the distribution and the bioavailability of the activating agent. (C) 2017 Elsevier B. V. All rights reserved.
T2  - New Biotechnology
T1  - Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity
VL  - 39
SP  - 150
EP  - 159
DO  - 10.1016/j.nbt.2017.03.001
ER  - 
@article{
author = "Đolić, Maja B. and Rajaković-Ognjanović, Vladana N. and Štrbac, Svetlana and Dimitrijević, Suzana I. and Mitrić, Miodrag and Onjia, Antonije E. and Rajaković, Ljubinka V.",
year = "2017",
url = "http://vinar.vin.bg.ac.rs/handle/123456789/1728",
abstract = "The objective of this study was to investigate the modification of materials used in wastewater treatment for possible antimicrobial application(s). Granulated activated carbon (GAC) and natural clinoptilolite (CLI) were activated using Cu2+-and Zn2+-ions and the disinfection ability of the resulting materials was tested. Studies of the sorption and desorption kinetics were performed in order to determine and clarify the antimicrobial activity of the metal-activated sorbents. The exact sorption capacities of the selected sorbents, GAC and CLI, activated through use of Cu2+-ions, were 15.90 and 3.60 mg/g, respectively, while for the materials activated by Zn2+-ions, the corresponding capacities were 14.00 and 4.72 mg/g,. The desorption rates were 2 and 3 orders of magnitude lower than their sorption efficacy for the Cu2+-, and Zn2+-activated sorbents, respectively. The intermediate sorption capacity and low desorption rate indicated that the overall antimicrobial activity of the metal-modified sorbents was a result of metal ions immobilized onto surface sites. The effect of antimicrobial activity of free ions desorbed from the metal-activated surface may thus be disregarded. The antimicrobial activities of Cu/GAC, Zn/GAC, Cu/CLI and Zn/ CLI were also tested against Escherichia coli, Staphylococcus aureus, and Candida albicans. After 15 min exposure, the highest levels of cell inactivation were obtained through the Cu/CLI and the Cu/GAC against E. coli, 100.0 and 98.24%, respectively. However, for S. aureus and yeast cell inactivation, all Cu2+-and Zn2+-activated sorbents proved to be unsatisfactory. A characterization of the sorbents was performed by Xray diffraction (XRD), X-ray photo electron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). A concentration of the adsorbed and released ions was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS). The results showed that the antimicrobial performance of the activated sorbents depended on the surface characteristics of the material, which itself designates the distribution and the bioavailability of the activating agent. (C) 2017 Elsevier B. V. All rights reserved.",
journal = "New Biotechnology",
title = "Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity",
volume = "39",
pages = "150-159",
doi = "10.1016/j.nbt.2017.03.001"
}
Đolić MB, Rajaković-Ognjanović VN, Štrbac S, Dimitrijević SI, Mitrić M, Onjia AE, Rajaković LV. Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity. New Biotechnology. 2017;39:150-159
Đolić, M. B., Rajaković-Ognjanović, V. N., Štrbac, S., Dimitrijević, S. I., Mitrić, M., Onjia, A. E.,& Rajaković, L. V. (2017). Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity.
New Biotechnology, 39, 150-159.
https://doi.org/10.1016/j.nbt.2017.03.001
Đolić Maja B., Rajaković-Ognjanović Vladana N., Štrbac Svetlana, Dimitrijević Suzana I., Mitrić Miodrag, Onjia Antonije E., Rajaković Ljubinka V., "Natural sorbents modified by divalent Cu2+- and Zn2+- ions and their corresponding antimicrobial activity" 39 (2017):150-159,
https://doi.org/10.1016/j.nbt.2017.03.001 .

DSpace software copyright © 2002-2015  DuraSpace
About VinaR - Repository of the Vinča Institute of Nuclear Sciences | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About VinaR - Repository of the Vinča Institute of Nuclear Sciences | Send Feedback

OpenAIRERCUB