Low-coercivity behavior and biomedical potential of cube-like and rounded hematite (α-Fe2O3) nanoparticles: Insights from hydrothermal synthesis
Само за регистроване кориснике
2025
Чланак у часопису (Рецензирана верзија)
Метаподаци
Приказ свих података о документуАпстракт
Understanding the shape-dependent magnetic properties of hematite (α-Fe2O3) nanoparticles is essential for advancing their biomedical and nanotechnological applications. We synthesized cube-like and rounded hematite nanoparticles using a controlled hydrothermal synthesis method by varying ethanol/water ratios, enabling precise morphological tuning. While the Morin transition temperature (TM) (225–231 K) and coercivity below TM (≈180 Oe) remain largely shape-independent, coercivity above TM exhibits significant shape dependence. Cube-like hematite nanoparticles display ultra-low coercivity (HC = 21 Oe) due to defect-minimized planar surfaces, whereas rounded hematite nanoparticles exhibit higher coercivity (HC = 306 Oe) due to defect-rich curved surfaces and atomic misalignments. MRI relaxivity measurements reveal that rounded hematite nanoparticles enhance transverse relaxivity (5.70 ± 0.17 mM[Fe]-1s−1), while cube-like hematite nanoparticles show higher longitudinal relaxivity (0.0075... mM[Fe]-1s−1), demonstrating morphology-dependent MRI contrast efficiency. With low cytotoxicity and high biocompatibility, the synthesized hematite nanoparticles show promise for biomedical applications, particularly in targeted imaging and magnetic nanodevice development. © 2025 Elsevier B.V.
Кључне речи:
magnetic properties / T1 and T2 contrast agents / Cytotoxicity / hematite (α-Fe2O3) / Hydrothermal synthesis / MRI magnetic resonance imagingИзвор:
Materials Science and Engineering. B: Advanced Functional Solid-State Materials, 2025, 317, 118204-Финансирање / пројекти:
- Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200017 (Универзитет у Београду, Институт за нуклеарне науке Винча, Београд-Винча) (RS-MESTD-inst-2020-200017)
- SlovenianResearch Agency [ARRS program P2-0082 and ARRS projects: J2-2509 and J2-2513]
- 2023-07-17 DOMINANTMAG - Development of epsilon-iron oxide-based nanocomposites: Towards the next-generation rare-earth-free magnets (RS-ScienceFundRS-Prizma2023_PM-7551)
- Serbian-Slovenian bilateral project [Contract No: 337-00-110/2023-05/30]
Напомена:
- This is the peer-reviewed version of the article: Tadic, M., Lazovic, J., Panjan, M., Tadic, B. V., & Lalatonne, Y. (2025). Low-coercivity behavior and biomedical potential of cube-like and rounded hematite (α-Fe2O3) nanoparticles: Insights from hydrothermal synthesis. Materials Science and Engineering: B, 317, 118204. http://dx.doi.org/10.1016/j.mseb.2025.118204
Повезане информације:
- Друга верзија
http://dx.doi.org/10.1016/j.mseb.2025.118204 - Друга верзија
https://vinar.vin.bg.ac.rs/handle/123456789/14573
DOI: 10.1016/j.mseb.2025.118204
ISSN: 0921-5107
WoS: 001445713300001
Scopus: 2-s2.0-86000616024
Колекције
Институција/група
VinčaTY - JOUR AU - Tadić, Marin AU - Lazović, Jelena AU - Panjan, Matjaž AU - Vučetić Tadić, Biljana AU - Lalatonne, Yoann PY - 2025 UR - https://vinar.vin.bg.ac.rs/handle/123456789/14796 AB - Understanding the shape-dependent magnetic properties of hematite (α-Fe2O3) nanoparticles is essential for advancing their biomedical and nanotechnological applications. We synthesized cube-like and rounded hematite nanoparticles using a controlled hydrothermal synthesis method by varying ethanol/water ratios, enabling precise morphological tuning. While the Morin transition temperature (TM) (225–231 K) and coercivity below TM (≈180 Oe) remain largely shape-independent, coercivity above TM exhibits significant shape dependence. Cube-like hematite nanoparticles display ultra-low coercivity (HC = 21 Oe) due to defect-minimized planar surfaces, whereas rounded hematite nanoparticles exhibit higher coercivity (HC = 306 Oe) due to defect-rich curved surfaces and atomic misalignments. MRI relaxivity measurements reveal that rounded hematite nanoparticles enhance transverse relaxivity (5.70 ± 0.17 mM[Fe]-1s−1), while cube-like hematite nanoparticles show higher longitudinal relaxivity (0.0075 mM[Fe]-1s−1), demonstrating morphology-dependent MRI contrast efficiency. With low cytotoxicity and high biocompatibility, the synthesized hematite nanoparticles show promise for biomedical applications, particularly in targeted imaging and magnetic nanodevice development. © 2025 Elsevier B.V. T2 - Materials Science and Engineering. B: Advanced Functional Solid-State Materials T1 - Low-coercivity behavior and biomedical potential of cube-like and rounded hematite (α-Fe2O3) nanoparticles: Insights from hydrothermal synthesis VL - 317 SP - 118204 DO - 10.1016/j.mseb.2025.118204 ER -
@article{
author = "Tadić, Marin and Lazović, Jelena and Panjan, Matjaž and Vučetić Tadić, Biljana and Lalatonne, Yoann",
year = "2025",
abstract = "Understanding the shape-dependent magnetic properties of hematite (α-Fe2O3) nanoparticles is essential for advancing their biomedical and nanotechnological applications. We synthesized cube-like and rounded hematite nanoparticles using a controlled hydrothermal synthesis method by varying ethanol/water ratios, enabling precise morphological tuning. While the Morin transition temperature (TM) (225–231 K) and coercivity below TM (≈180 Oe) remain largely shape-independent, coercivity above TM exhibits significant shape dependence. Cube-like hematite nanoparticles display ultra-low coercivity (HC = 21 Oe) due to defect-minimized planar surfaces, whereas rounded hematite nanoparticles exhibit higher coercivity (HC = 306 Oe) due to defect-rich curved surfaces and atomic misalignments. MRI relaxivity measurements reveal that rounded hematite nanoparticles enhance transverse relaxivity (5.70 ± 0.17 mM[Fe]-1s−1), while cube-like hematite nanoparticles show higher longitudinal relaxivity (0.0075 mM[Fe]-1s−1), demonstrating morphology-dependent MRI contrast efficiency. With low cytotoxicity and high biocompatibility, the synthesized hematite nanoparticles show promise for biomedical applications, particularly in targeted imaging and magnetic nanodevice development. © 2025 Elsevier B.V.",
journal = "Materials Science and Engineering. B: Advanced Functional Solid-State Materials",
title = "Low-coercivity behavior and biomedical potential of cube-like and rounded hematite (α-Fe2O3) nanoparticles: Insights from hydrothermal synthesis",
volume = "317",
pages = "118204",
doi = "10.1016/j.mseb.2025.118204"
}
Tadić, M., Lazović, J., Panjan, M., Vučetić Tadić, B.,& Lalatonne, Y.. (2025). Low-coercivity behavior and biomedical potential of cube-like and rounded hematite (α-Fe2O3) nanoparticles: Insights from hydrothermal synthesis. in Materials Science and Engineering. B: Advanced Functional Solid-State Materials, 317, 118204. https://doi.org/10.1016/j.mseb.2025.118204
Tadić M, Lazović J, Panjan M, Vučetić Tadić B, Lalatonne Y. Low-coercivity behavior and biomedical potential of cube-like and rounded hematite (α-Fe2O3) nanoparticles: Insights from hydrothermal synthesis. in Materials Science and Engineering. B: Advanced Functional Solid-State Materials. 2025;317:118204. doi:10.1016/j.mseb.2025.118204 .
Tadić, Marin, Lazović, Jelena, Panjan, Matjaž, Vučetić Tadić, Biljana, Lalatonne, Yoann, "Low-coercivity behavior and biomedical potential of cube-like and rounded hematite (α-Fe2O3) nanoparticles: Insights from hydrothermal synthesis" in Materials Science and Engineering. B: Advanced Functional Solid-State Materials, 317 (2025):118204, https://doi.org/10.1016/j.mseb.2025.118204 . .


