VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graphene quantum dots and fullerenol as new carbon sources for single-layer and bi-layer graphene synthesis by rapid thermal annealing method

Authorized Users Only
2017
Authors
Prekodravac, Jovana
Marković, Zoran M.
Jovanović, Svetlana P.
Holclajtner-Antunović, Ivanka D.
Kepić, Dejan P.
Budimir, Milica
Todorović-Marković, Biljana
Article (Published version)
Metadata
Show full item record
Abstract
Graphene as a new material is in the spotlight due to its extraordinary properties and wide range of potential applications. Chemical vapour deposition, as a method for graphene synthesis from gaseous hydrocarbon sources has great promises for large-scale graphene synthesis. However, for such grow high temperatures of 800-1000 degrees C are typically required. Here we demonstrate synthesis of single-layer and bi-layer graphene thin films of approximately 10,m in size by rapid thermal annealing process at low annealing temperature such as 600 degrees C. Synthesis was performed on copper foil from graphene quantum dots and fullerenol as solid carbon sources at different concentrations. Raman spectroscopy study has shown that the number of grown graphene layers depends on the carbon source concentration. The quality of formed graphene layers withal depends on the carbon source and its concentration, whereby graphene from graphene quantum dots had better quality. (C) 2016 Elsevier Ltd. All... rights reserved.

Keywords:
Nanostructures / Thin films / Raman spectroscopy / Transmission electron microscopy / Defects
Source:
Materials Research Bulletin, 2017, 88, 114-120
Funding / projects:
  • Thin films of single wall carbon nanotubes and graphene for electronic application (RS-172003)
  • SASPRO - Mobility Programme of Slovak Academy of Sciences: Supportive Fund for Excellent Scientists (EU-609427)
  • SASPRO Programme [1237/02/02-b], Slovak Academy of Sciences, Serbian French bilateral project [451-03-3455/2013-09/08], bilateral project Serbia-Slovakia [SK-SRB-2013-0044 (451-03-545/2015-09/07)], VEGA [2/0093/16]

DOI: 10.1016/j.materresbull.2016.12.018

ISSN: 0025-5408; 1873-4227

WoS: 000393635500016

Scopus: 2-s2.0-85007227706
[ Google Scholar ]
11
6
URI
https://vinar.vin.bg.ac.rs/handle/123456789/1420
Collections
  • WoS Import
Institution/Community
Vinča
TY  - JOUR
AU  - Prekodravac, Jovana
AU  - Marković, Zoran M.
AU  - Jovanović, Svetlana P.
AU  - Holclajtner-Antunović, Ivanka D.
AU  - Kepić, Dejan P.
AU  - Budimir, Milica
AU  - Todorović-Marković, Biljana
PY  - 2017
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1420
AB  - Graphene as a new material is in the spotlight due to its extraordinary properties and wide range of potential applications. Chemical vapour deposition, as a method for graphene synthesis from gaseous hydrocarbon sources has great promises for large-scale graphene synthesis. However, for such grow high temperatures of 800-1000 degrees C are typically required. Here we demonstrate synthesis of single-layer and bi-layer graphene thin films of approximately 10,m in size by rapid thermal annealing process at low annealing temperature such as 600 degrees C. Synthesis was performed on copper foil from graphene quantum dots and fullerenol as solid carbon sources at different concentrations. Raman spectroscopy study has shown that the number of grown graphene layers depends on the carbon source concentration. The quality of formed graphene layers withal depends on the carbon source and its concentration, whereby graphene from graphene quantum dots had better quality. (C) 2016 Elsevier Ltd. All rights reserved.
T2  - Materials Research Bulletin
T1  - Graphene quantum dots and fullerenol as new carbon sources for single-layer and bi-layer graphene synthesis by rapid thermal annealing method
VL  - 88
SP  - 114
EP  - 120
DO  - 10.1016/j.materresbull.2016.12.018
ER  - 
@article{
author = "Prekodravac, Jovana and Marković, Zoran M. and Jovanović, Svetlana P. and Holclajtner-Antunović, Ivanka D. and Kepić, Dejan P. and Budimir, Milica and Todorović-Marković, Biljana",
year = "2017",
abstract = "Graphene as a new material is in the spotlight due to its extraordinary properties and wide range of potential applications. Chemical vapour deposition, as a method for graphene synthesis from gaseous hydrocarbon sources has great promises for large-scale graphene synthesis. However, for such grow high temperatures of 800-1000 degrees C are typically required. Here we demonstrate synthesis of single-layer and bi-layer graphene thin films of approximately 10,m in size by rapid thermal annealing process at low annealing temperature such as 600 degrees C. Synthesis was performed on copper foil from graphene quantum dots and fullerenol as solid carbon sources at different concentrations. Raman spectroscopy study has shown that the number of grown graphene layers depends on the carbon source concentration. The quality of formed graphene layers withal depends on the carbon source and its concentration, whereby graphene from graphene quantum dots had better quality. (C) 2016 Elsevier Ltd. All rights reserved.",
journal = "Materials Research Bulletin",
title = "Graphene quantum dots and fullerenol as new carbon sources for single-layer and bi-layer graphene synthesis by rapid thermal annealing method",
volume = "88",
pages = "114-120",
doi = "10.1016/j.materresbull.2016.12.018"
}
Prekodravac, J., Marković, Z. M., Jovanović, S. P., Holclajtner-Antunović, I. D., Kepić, D. P., Budimir, M.,& Todorović-Marković, B.. (2017). Graphene quantum dots and fullerenol as new carbon sources for single-layer and bi-layer graphene synthesis by rapid thermal annealing method. in Materials Research Bulletin, 88, 114-120.
https://doi.org/10.1016/j.materresbull.2016.12.018
Prekodravac J, Marković ZM, Jovanović SP, Holclajtner-Antunović ID, Kepić DP, Budimir M, Todorović-Marković B. Graphene quantum dots and fullerenol as new carbon sources for single-layer and bi-layer graphene synthesis by rapid thermal annealing method. in Materials Research Bulletin. 2017;88:114-120.
doi:10.1016/j.materresbull.2016.12.018 .
Prekodravac, Jovana, Marković, Zoran M., Jovanović, Svetlana P., Holclajtner-Antunović, Ivanka D., Kepić, Dejan P., Budimir, Milica, Todorović-Marković, Biljana, "Graphene quantum dots and fullerenol as new carbon sources for single-layer and bi-layer graphene synthesis by rapid thermal annealing method" in Materials Research Bulletin, 88 (2017):114-120,
https://doi.org/10.1016/j.materresbull.2016.12.018 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB