DisSFusionMat
Development of dispersion – strengthened metal-based materials for applications in fusion reactor
Akronim / šifra: DisSFusionMat / 7365NIO nosilac projekta: Univerzitet u Beogradu - Institut za nuklearne nauke „Vinča“
NIO učesnici projekta: Univerzitet u Beogradu - Fizički fakultet
Rukovodilac projekta: Jelena Stašić, naučni savetnik
Projekat finansira: Fond za nauku Republike Srbije
Program: PRIZMA
Period realizacije: 2023 - 2026.
[sr] Sa intenzivnim istraživanjima širom sveta u oblasti fuzione energije, jedno od najvažnijih pitanja je izbor konstrukcionih materijala koji bi se koristili u takvim reaktorima. Među glavnim kandidatima su nerđajući čelik 316L, ODS čelici (čelici disperzno ojačani oksidima) i legure na osnovi bakra. Predloženi multidisciplinarni projekat DisSFusionMat predstavlja sveobuhvatno istraživanje, pre svega eksperimentalno, razvoja novih, disperzno ojačanih materijala na osnovi bakarne legure CuCrZr i 316L čelika. Očekuje se da dobijena bakarna legura i ODS čelik pokažu poboljšana svojstva u pogledu, pre svega, mehaničkih karakteristika i ponašanja na povišenim temperaturama. Sinteza će biti izvršena polazeći od mehanički legiranih prahova, na dva načina: (i) tehnikom aditivne proizvodnje, tj. selektivnim laserskim topljenjem, i (ii) tehnikom metalurgije praha. Kod oba pristupa čestice ojačivača će biti formirane in situ što bi trebalo da obezbedi njihovu finu veličinu i dobru raspodelu. Sintetizovani materijali biće upoređeni i ispitani proučavanjem njihove mikrostrukture i mehaničkih svojstava. Efekti povišenih temperaturnih flukseva biće proučavani novim i ređe korišćenim pristupom impulsnog laserskog ozračivanja. Očekuje se da će dobijeni novi materijali i savremene metode njihove sinteze i ispitivanja pružiti nova znanja u oblasti nauke o materijalima, fizike, hemije i metalurgije.
[en]With the extensive research on fusion energy in the facilities worldwide, one of the most important issues is the choice of construction materials which would be used in such reactors. Among the main candidate materials are stainless steel and copper-based alloys. The proposed multidisciplinary project DisSFusionMat will cover a comprehensive research, primarily experimental, on the development of novel, dispersion strengthened materials based on copper and steel. The obtained materials are expected to show improved properties concerning primarily mechanical characteristics and behavior under high temperature fluxes. Synthesis will be conducted from mechanically alloyed powders in two ways: (i) by additive manufacturing technique and (ii) by powder metallurgy technique. In both approaches reinforcements will be formed in situ which should ensure their fine size and good distribution. Synthesized materials will be compared and investigated by examining their microstructure and mechanical properties. The effects of high temperature fluxes will be studied using pulsed laser irradiation. New materials synthesized and contemporary methods of their synthesis and examination are expected to provide new knowledge and impact materials science, physics, chemistry and metallurgy.
Најновије
-
Influence of the heat treatment on the structural parameters of the CuCrZr-TiB2 alloy
(Bor : University of Belgrade - Technical Faculty in Bor, 2025) -
Quantitative Analysis of Mechanically Alloyed CuZrB Powders
(Metallurgical and Materials Data, 2025) -
Application of powder metallurgy in the production of the copper-based material
(Belgrade : Materials Research Society of Serbia, 2024) -
Cost-Effective Production of CuCrZr Alloy Using Powder Metallurgy / Isplativa proizvodnja legure CuCrZr primenom metalurgije praha
(Beograd : Savez mašinskih i elektrotehničkih inženjera i tehničara Srbije (SMEITS), Beograd : Društvo za procesnu tehniku, 2024) -
Mechanical alloying as a crucial step in the fabrication process of Cu alloys
(Belgrade : Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade : Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME), 2024)
