VinaR - Repozitorijum Instituta za nuklearne nauke Vinča
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled zapisa 
  •   VinaR
  • Vinča
  • WoS Import
  • Pregled zapisa
  •   VinaR
  • Vinča
  • WoS Import
  • Pregled zapisa
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel Fragmentation Model for Pulverized Coal Particles Gasification in Low Temperature Air Thermal Plasma

Thumbnail
2016
Preuzimanje 🢃
1141.pdf (716.9Kb)
Autori
Jovanović, Rastko D.
Cvetinović, Dejan
Stefanović, Predrag Lj.
Škobalj, Predrag D.
Marković, Zoran J.
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial computer fluid dynamics codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to thermal shock and extensive particle fragmentation during which coal particles with initial size of... 50-100 mu m disintegrate into fragments of at most 5-10 mu m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale direct current plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

Ključne reči:
Serbian lignite gasification / low temperature thermal plasma / CFD / particle fragmentation / modeling validation
Izvor:
Thermal Science, 2016, 20, S207-S221
Finansiranje / projekti:
  • Smanjenje aerozagađenja iz termoelektrana u JP Elektroprivreda Srbije (RS-MESTD-Integrated and Interdisciplinary Research (IIR or III)-42010)
  • Poboljšanje kvaliteta i tehnologije sagorevanja domaćih lignita u cilju povećanja energetske efikasnosti i smanjenja emisije štetnih materija iz termoelektrana JP Elektroprivreda Srbije (RS-MESTD-Technological Development (TD or TR)-33050)

DOI: 10.2298/TSCI151222015J

ISSN: 0354-9836

WoS: 000378584200019

[ Google Scholar ]
5
URI
https://vinar.vin.bg.ac.rs/handle/123456789/1145
Kolekcije
  • WoS Import
Institucija/grupa
Vinča
TY  - JOUR
AU  - Jovanović, Rastko D.
AU  - Cvetinović, Dejan
AU  - Stefanović, Predrag Lj.
AU  - Škobalj, Predrag D.
AU  - Marković, Zoran J.
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1145
AB  - New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial computer fluid dynamics codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to thermal shock and extensive particle fragmentation during which coal particles with initial size of 50-100 mu m disintegrate into fragments of at most 5-10 mu m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale direct current plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.
T2  - Thermal Science
T1  - Novel Fragmentation Model for Pulverized Coal Particles Gasification in Low Temperature Air Thermal Plasma
VL  - 20
SP  - S207
EP  - S221
DO  - 10.2298/TSCI151222015J
ER  - 
@article{
author = "Jovanović, Rastko D. and Cvetinović, Dejan and Stefanović, Predrag Lj. and Škobalj, Predrag D. and Marković, Zoran J.",
year = "2016",
abstract = "New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial computer fluid dynamics codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to thermal shock and extensive particle fragmentation during which coal particles with initial size of 50-100 mu m disintegrate into fragments of at most 5-10 mu m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale direct current plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.",
journal = "Thermal Science",
title = "Novel Fragmentation Model for Pulverized Coal Particles Gasification in Low Temperature Air Thermal Plasma",
volume = "20",
pages = "S207-S221",
doi = "10.2298/TSCI151222015J"
}
Jovanović, R. D., Cvetinović, D., Stefanović, P. Lj., Škobalj, P. D.,& Marković, Z. J.. (2016). Novel Fragmentation Model for Pulverized Coal Particles Gasification in Low Temperature Air Thermal Plasma. in Thermal Science, 20, S207-S221.
https://doi.org/10.2298/TSCI151222015J
Jovanović RD, Cvetinović D, Stefanović PL, Škobalj PD, Marković ZJ. Novel Fragmentation Model for Pulverized Coal Particles Gasification in Low Temperature Air Thermal Plasma. in Thermal Science. 2016;20:S207-S221.
doi:10.2298/TSCI151222015J .
Jovanović, Rastko D., Cvetinović, Dejan, Stefanović, Predrag Lj., Škobalj, Predrag D., Marković, Zoran J., "Novel Fragmentation Model for Pulverized Coal Particles Gasification in Low Temperature Air Thermal Plasma" in Thermal Science, 20 (2016):S207-S221,
https://doi.org/10.2298/TSCI151222015J . .

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu VinaR | Pošaljite zapažanja

re3dataOpenAIRERCUB
 

 

Kompletan repozitorijumGrupeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O repozitorijumu VinaR | Pošaljite zapažanja

re3dataOpenAIRERCUB