Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers
Authorized Users Only
2023
Authors
Ristić, Mirjana
Samaržija-Jovanović, Suzana

Jovanović, Vojislav

Kostić, Marija
Erceg, Tamara
Jovanović, Tijana
Marković, Gordana
Marinović-Cincović, Milena

Article (Published version)

Metadata
Show full item recordAbstract
In this work, betaine (trimethyl glycine) and tannin (complex biomolecules of polyphenolic nature) were used as bio-fillers. Urea-formaldehyde (UF) resin with a molar ratio of formaldehyde versus urea (FA/U) of 0.8 was synthesized in situ with tannin and betaine as bio-fillers, to obtain UF resin with reduced free FA content and increased hydrolytic and thermal stability by the principles of sustainability. The samples TUF (with tannin) and BUF (with betaine) were characterized by using X-ray diffraction analysis (XRD), non-isothermal thermogravimetric analysis (TGA), and differential thermal analysis (DTA), supported by data from Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The percentage of free FA in modified BUF resin is 0.1%, while the percentage of free FA in tannin-modified resin is 0.8%. The hydrolytic stability of the modified UF resins was determined by measuring the concentration of liberated FA in the modified UF resins, after acid ...hydrolysis. The modified BUF resin is hydrolytically more stable because the content of released FA is 3.6% compared to the modified TUF resin, where it was 7.4%. Based on the value for T5%, the more thermally stable resin is the modified TUF resin (T5% = 123.1°C), while the value of the T5% for the BUF resin is 83.1°C. This work showed how UF bio-composite with reduced free FA content and increased hydrolytic and thermal stability can be obtained using tannin and betaine as bio-fillers.
Keywords:
adhesives / biomaterials / filler / modification / thermogravimetric analysis (TGA)Source:
Journal of Vinyl and Additive Technology, 2023, InPressFunding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200123 (University of Priština - Kosovska Mitrovica, Faculty of Natural Sciences and Mathematics) (RS-200123)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
DOI: 10.1002/vnl.22024
ISSN: 1548-0585
WoS: 001002761600001
Scopus: 2-s2.0-85161498203
Institution/Community
VinčaTY - JOUR AU - Ristić, Mirjana AU - Samaržija-Jovanović, Suzana AU - Jovanović, Vojislav AU - Kostić, Marija AU - Erceg, Tamara AU - Jovanović, Tijana AU - Marković, Gordana AU - Marinović-Cincović, Milena PY - 2023 UR - https://vinar.vin.bg.ac.rs/handle/123456789/11101 AB - In this work, betaine (trimethyl glycine) and tannin (complex biomolecules of polyphenolic nature) were used as bio-fillers. Urea-formaldehyde (UF) resin with a molar ratio of formaldehyde versus urea (FA/U) of 0.8 was synthesized in situ with tannin and betaine as bio-fillers, to obtain UF resin with reduced free FA content and increased hydrolytic and thermal stability by the principles of sustainability. The samples TUF (with tannin) and BUF (with betaine) were characterized by using X-ray diffraction analysis (XRD), non-isothermal thermogravimetric analysis (TGA), and differential thermal analysis (DTA), supported by data from Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The percentage of free FA in modified BUF resin is 0.1%, while the percentage of free FA in tannin-modified resin is 0.8%. The hydrolytic stability of the modified UF resins was determined by measuring the concentration of liberated FA in the modified UF resins, after acid hydrolysis. The modified BUF resin is hydrolytically more stable because the content of released FA is 3.6% compared to the modified TUF resin, where it was 7.4%. Based on the value for T5%, the more thermally stable resin is the modified TUF resin (T5% = 123.1°C), while the value of the T5% for the BUF resin is 83.1°C. This work showed how UF bio-composite with reduced free FA content and increased hydrolytic and thermal stability can be obtained using tannin and betaine as bio-fillers. T2 - Journal of Vinyl and Additive Technology T1 - Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers IS - InPress DO - 10.1002/vnl.22024 ER -
@article{ author = "Ristić, Mirjana and Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Kostić, Marija and Erceg, Tamara and Jovanović, Tijana and Marković, Gordana and Marinović-Cincović, Milena", year = "2023", abstract = "In this work, betaine (trimethyl glycine) and tannin (complex biomolecules of polyphenolic nature) were used as bio-fillers. Urea-formaldehyde (UF) resin with a molar ratio of formaldehyde versus urea (FA/U) of 0.8 was synthesized in situ with tannin and betaine as bio-fillers, to obtain UF resin with reduced free FA content and increased hydrolytic and thermal stability by the principles of sustainability. The samples TUF (with tannin) and BUF (with betaine) were characterized by using X-ray diffraction analysis (XRD), non-isothermal thermogravimetric analysis (TGA), and differential thermal analysis (DTA), supported by data from Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The percentage of free FA in modified BUF resin is 0.1%, while the percentage of free FA in tannin-modified resin is 0.8%. The hydrolytic stability of the modified UF resins was determined by measuring the concentration of liberated FA in the modified UF resins, after acid hydrolysis. The modified BUF resin is hydrolytically more stable because the content of released FA is 3.6% compared to the modified TUF resin, where it was 7.4%. Based on the value for T5%, the more thermally stable resin is the modified TUF resin (T5% = 123.1°C), while the value of the T5% for the BUF resin is 83.1°C. This work showed how UF bio-composite with reduced free FA content and increased hydrolytic and thermal stability can be obtained using tannin and betaine as bio-fillers.", journal = "Journal of Vinyl and Additive Technology", title = "Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers", number = "InPress", doi = "10.1002/vnl.22024" }
Ristić, M., Samaržija-Jovanović, S., Jovanović, V., Kostić, M., Erceg, T., Jovanović, T., Marković, G.,& Marinović-Cincović, M.. (2023). Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers. in Journal of Vinyl and Additive Technology(InPress). https://doi.org/10.1002/vnl.22024
Ristić M, Samaržija-Jovanović S, Jovanović V, Kostić M, Erceg T, Jovanović T, Marković G, Marinović-Cincović M. Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers. in Journal of Vinyl and Additive Technology. 2023;(InPress). doi:10.1002/vnl.22024 .
Ristić, Mirjana, Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Kostić, Marija, Erceg, Tamara, Jovanović, Tijana, Marković, Gordana, Marinović-Cincović, Milena, "Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers" in Journal of Vinyl and Additive Technology, no. InPress (2023), https://doi.org/10.1002/vnl.22024 . .