VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of biomass particles size and shape on combustion process in the swirl-stabilized burner reactor: CFD and machine learning approach

Authorized Users Only
2023
Authors
Milićević, Aleksandar
Belošević, Srđan
Žarković, Mileta
Tomanović, Ivan
Crnomarković, Nenad
Stojanović, Andrijana
Stupar, Goran
Deng, Lei
Che, Defu
Article (Published version)
Metadata
Show full item record
Abstract
When planning the development of the energy sector, significant attention is given to the energy from the renewable sources, amongst which the biomass has an important role. Computational fluid mechanics and machine learning models are the powerful and efficient tools which allow the analysis of various heat and mass transfer phenomena in energy facilities. In this study, the in-house developed CFD code and machine learning models (Random Forest, Gradient Boosting and Artificial Neural Network) for predicting the biomass trajectories, particle mass burnout and residence time in a swirl burner reactor are presented. Pulverized biomass combustion cases (fine straw, pinewood and switch grass) with various mean diameters (ranging between 60 and 650 μm) and different shape factors (within the range 0–1) are considered. The results of numerical simulations revealed a noticeably nonlinear dependence between the input values (particle types, sizes and shapes) and the output values (particle tr...ajectories, mass burnout and residence time), mostly due to the complex swirling flow in the reactor. For particles with the mean diameters within the ranges considered, the mass burnout of particles generally decreases as the biomass particle shape factor increases. The residence time of pulverized biomass in the reactor shows in most cases a decreasing trend as the particle shape factor increases. Artificial Neural Network showed the best predictions for both particle mass burnout (RMSE = 0.083 and R2 = 0.937) and particle residence time (RMSE = 1.145 s and R2 = 0.900), providing the reliable assessment of these important indicators in the combustion process.

Keywords:
Artificial intelligence / Biomass combustion / CFD / Particle size / Shape factor / Swirl burner reactor
Source:
Biomass and Bioenergy, 2023, 174, 106817-
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
  • China-CEEC Joint Higher Education Project [Cultivation Project CEEC2021001]

DOI: 10.1016/j.biombioe.2023.106817

ISSN: 0961-9534

Scopus: 2-s2.0-85159487301
[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/11021
Collections
  • Radovi istraživača
  • 140 - Laboratorija za termotehniku i energetiku
Institution/Community
Vinča
TY  - JOUR
AU  - Milićević, Aleksandar
AU  - Belošević, Srđan
AU  - Žarković, Mileta
AU  - Tomanović, Ivan
AU  - Crnomarković, Nenad
AU  - Stojanović, Andrijana
AU  - Stupar, Goran
AU  - Deng, Lei
AU  - Che, Defu
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/11021
AB  - When planning the development of the energy sector, significant attention is given to the energy from the renewable sources, amongst which the biomass has an important role. Computational fluid mechanics and machine learning models are the powerful and efficient tools which allow the analysis of various heat and mass transfer phenomena in energy facilities. In this study, the in-house developed CFD code and machine learning models (Random Forest, Gradient Boosting and Artificial Neural Network) for predicting the biomass trajectories, particle mass burnout and residence time in a swirl burner reactor are presented. Pulverized biomass combustion cases (fine straw, pinewood and switch grass) with various mean diameters (ranging between 60 and 650 μm) and different shape factors (within the range 0–1) are considered. The results of numerical simulations revealed a noticeably nonlinear dependence between the input values (particle types, sizes and shapes) and the output values (particle trajectories, mass burnout and residence time), mostly due to the complex swirling flow in the reactor. For particles with the mean diameters within the ranges considered, the mass burnout of particles generally decreases as the biomass particle shape factor increases. The residence time of pulverized biomass in the reactor shows in most cases a decreasing trend as the particle shape factor increases. Artificial Neural Network showed the best predictions for both particle mass burnout (RMSE = 0.083 and R2 = 0.937) and particle residence time (RMSE = 1.145 s and R2 = 0.900), providing the reliable assessment of these important indicators in the combustion process.
T2  - Biomass and Bioenergy
T1  - Effects of biomass particles size and shape on combustion process in the swirl-stabilized burner reactor: CFD and machine learning approach
VL  - 174
SP  - 106817
DO  - 10.1016/j.biombioe.2023.106817
ER  - 
@article{
author = "Milićević, Aleksandar and Belošević, Srđan and Žarković, Mileta and Tomanović, Ivan and Crnomarković, Nenad and Stojanović, Andrijana and Stupar, Goran and Deng, Lei and Che, Defu",
year = "2023",
abstract = "When planning the development of the energy sector, significant attention is given to the energy from the renewable sources, amongst which the biomass has an important role. Computational fluid mechanics and machine learning models are the powerful and efficient tools which allow the analysis of various heat and mass transfer phenomena in energy facilities. In this study, the in-house developed CFD code and machine learning models (Random Forest, Gradient Boosting and Artificial Neural Network) for predicting the biomass trajectories, particle mass burnout and residence time in a swirl burner reactor are presented. Pulverized biomass combustion cases (fine straw, pinewood and switch grass) with various mean diameters (ranging between 60 and 650 μm) and different shape factors (within the range 0–1) are considered. The results of numerical simulations revealed a noticeably nonlinear dependence between the input values (particle types, sizes and shapes) and the output values (particle trajectories, mass burnout and residence time), mostly due to the complex swirling flow in the reactor. For particles with the mean diameters within the ranges considered, the mass burnout of particles generally decreases as the biomass particle shape factor increases. The residence time of pulverized biomass in the reactor shows in most cases a decreasing trend as the particle shape factor increases. Artificial Neural Network showed the best predictions for both particle mass burnout (RMSE = 0.083 and R2 = 0.937) and particle residence time (RMSE = 1.145 s and R2 = 0.900), providing the reliable assessment of these important indicators in the combustion process.",
journal = "Biomass and Bioenergy",
title = "Effects of biomass particles size and shape on combustion process in the swirl-stabilized burner reactor: CFD and machine learning approach",
volume = "174",
pages = "106817",
doi = "10.1016/j.biombioe.2023.106817"
}
Milićević, A., Belošević, S., Žarković, M., Tomanović, I., Crnomarković, N., Stojanović, A., Stupar, G., Deng, L.,& Che, D.. (2023). Effects of biomass particles size and shape on combustion process in the swirl-stabilized burner reactor: CFD and machine learning approach. in Biomass and Bioenergy, 174, 106817.
https://doi.org/10.1016/j.biombioe.2023.106817
Milićević A, Belošević S, Žarković M, Tomanović I, Crnomarković N, Stojanović A, Stupar G, Deng L, Che D. Effects of biomass particles size and shape on combustion process in the swirl-stabilized burner reactor: CFD and machine learning approach. in Biomass and Bioenergy. 2023;174:106817.
doi:10.1016/j.biombioe.2023.106817 .
Milićević, Aleksandar, Belošević, Srđan, Žarković, Mileta, Tomanović, Ivan, Crnomarković, Nenad, Stojanović, Andrijana, Stupar, Goran, Deng, Lei, Che, Defu, "Effects of biomass particles size and shape on combustion process in the swirl-stabilized burner reactor: CFD and machine learning approach" in Biomass and Bioenergy, 174 (2023):106817,
https://doi.org/10.1016/j.biombioe.2023.106817 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB