VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of an ethidium bromide control circuit supported by deep theoretical insight

Authorized Users Only
2023
Authors
Vlahović, Filip
Ognjanović, Miloš
Đurđić, Slađana
Kukuruzar, Andrej
Antić, Bratislav
Dojčinović, Biljana
Stanković, Dalibor M.
Article (Published version)
Metadata
Show full item record
Abstract
We have set-up an electrochemical advanced oxidation process for ethidium bromide (1), based on the Eu-doped MnWO4 (Eu:MnWO4), obtained through a template-driven synthesis, along with developing a suitable monitoring method. Under galvanostatic conditions, Eu:MnWO4-coated graphite electrode serves as anode, applicable for removal of 1. To go further and augment the catalytic method, we have applied a modified carbon paste electrode for the monitoring of 1 with the limit of detection (LOD) of 54 nM. Enhancement of the hydrogen evolution reaction is an indication of electrocatalytic properties of the material, whereby developed method emerges as a candidate for straightforward application in electrochemical advanced oxidation processes (EAOPs). We have enriched experimental data with theoretical insights, provided by Density Functional Theory (DFT), and proposed oxidation mechanism of 1. Based on obtained results, we propose the new nanomaterial as a potent electrochemical modifier, suit...able for catalytic treatment and process monitoring of the 1-polluted waters.

Keywords:
Density functional theory / Electrochemical advanced oxidation processes / Fukui functions / Modified graphite anode / Submicromolar detection
Source:
Applied Catalysis B: Environmental, 2023, 334, 122819-
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
  • EUREKA [Project E!13303]

DOI: 10.1016/j.apcatb.2023.122819

ISSN: 0926-3373

Scopus: 2-s2.0-85153798882
[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10919
Collections
  • Radovi istraživača
  • 020 - Laboratorija za teorijsku fiziku i fiziku kondenzovane materije
  • 070 - Laboratorija za radioizotope
Institution/Community
Vinča
TY  - JOUR
AU  - Vlahović, Filip
AU  - Ognjanović, Miloš
AU  - Đurđić, Slađana
AU  - Kukuruzar, Andrej
AU  - Antić, Bratislav
AU  - Dojčinović, Biljana
AU  - Stanković, Dalibor M.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10919
AB  - We have set-up an electrochemical advanced oxidation process for ethidium bromide (1), based on the Eu-doped MnWO4 (Eu:MnWO4), obtained through a template-driven synthesis, along with developing a suitable monitoring method. Under galvanostatic conditions, Eu:MnWO4-coated graphite electrode serves as anode, applicable for removal of 1. To go further and augment the catalytic method, we have applied a modified carbon paste electrode for the monitoring of 1 with the limit of detection (LOD) of 54 nM. Enhancement of the hydrogen evolution reaction is an indication of electrocatalytic properties of the material, whereby developed method emerges as a candidate for straightforward application in electrochemical advanced oxidation processes (EAOPs). We have enriched experimental data with theoretical insights, provided by Density Functional Theory (DFT), and proposed oxidation mechanism of 1. Based on obtained results, we propose the new nanomaterial as a potent electrochemical modifier, suitable for catalytic treatment and process monitoring of the 1-polluted waters.
T2  - Applied Catalysis B: Environmental
T1  - Design of an ethidium bromide control circuit supported by deep theoretical insight
VL  - 334
SP  - 122819
DO  - 10.1016/j.apcatb.2023.122819
ER  - 
@article{
author = "Vlahović, Filip and Ognjanović, Miloš and Đurđić, Slađana and Kukuruzar, Andrej and Antić, Bratislav and Dojčinović, Biljana and Stanković, Dalibor M.",
year = "2023",
abstract = "We have set-up an electrochemical advanced oxidation process for ethidium bromide (1), based on the Eu-doped MnWO4 (Eu:MnWO4), obtained through a template-driven synthesis, along with developing a suitable monitoring method. Under galvanostatic conditions, Eu:MnWO4-coated graphite electrode serves as anode, applicable for removal of 1. To go further and augment the catalytic method, we have applied a modified carbon paste electrode for the monitoring of 1 with the limit of detection (LOD) of 54 nM. Enhancement of the hydrogen evolution reaction is an indication of electrocatalytic properties of the material, whereby developed method emerges as a candidate for straightforward application in electrochemical advanced oxidation processes (EAOPs). We have enriched experimental data with theoretical insights, provided by Density Functional Theory (DFT), and proposed oxidation mechanism of 1. Based on obtained results, we propose the new nanomaterial as a potent electrochemical modifier, suitable for catalytic treatment and process monitoring of the 1-polluted waters.",
journal = "Applied Catalysis B: Environmental",
title = "Design of an ethidium bromide control circuit supported by deep theoretical insight",
volume = "334",
pages = "122819",
doi = "10.1016/j.apcatb.2023.122819"
}
Vlahović, F., Ognjanović, M., Đurđić, S., Kukuruzar, A., Antić, B., Dojčinović, B.,& Stanković, D. M.. (2023). Design of an ethidium bromide control circuit supported by deep theoretical insight. in Applied Catalysis B: Environmental, 334, 122819.
https://doi.org/10.1016/j.apcatb.2023.122819
Vlahović F, Ognjanović M, Đurđić S, Kukuruzar A, Antić B, Dojčinović B, Stanković DM. Design of an ethidium bromide control circuit supported by deep theoretical insight. in Applied Catalysis B: Environmental. 2023;334:122819.
doi:10.1016/j.apcatb.2023.122819 .
Vlahović, Filip, Ognjanović, Miloš, Đurđić, Slađana, Kukuruzar, Andrej, Antić, Bratislav, Dojčinović, Biljana, Stanković, Dalibor M., "Design of an ethidium bromide control circuit supported by deep theoretical insight" in Applied Catalysis B: Environmental, 334 (2023):122819,
https://doi.org/10.1016/j.apcatb.2023.122819 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB