VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low-Intensity Exercise Affects Cardiac Fatty Acid Oxidation by Increasing the Nuclear Content of PPARα, FOXO1, and Lipin1 in Fructose-Fed Rats

No Thumbnail
Authors
Kostić, Milan
Korićanac, Goran
Tepavčević, Snežana
Stanišić, Jelena
Romić, Snježana Đ.
Ćulafić, Tijana
Ivković, Tamara
Stojiljković, Mojca D.
Article (Published version)
Metadata
Show full item record
Abstract
Background and Aim: Excessive fructose consumption along with a sedentary lifestyle provokes metabolic disorders and cardiovascular diseases. Fructose overload causes cardiac insulin resistance and increases reliance on fatty acid (FA) uptake and catabolism. The cardiometabolic benefits of exercise training have long been appreciated. The goal of the presented study is to shed a new light to the preventive role of exercise training on cardiac lipid metabolism in fructose-fed rats. Methods: Male Wistar rats were divided into control (C), sedentary fructose (F), and exercised fructose (EF) groups. Fructose was given as a 10% fructose solution in drinking water for 9 weeks. Low-intensity exercise training was applied for 9 weeks. The protein expression and subcellular localization of Lipin1, peroxisome proliferator-activated receptor α (PPARα), and peroxisome proliferator-activated receptor-γcoactivator 1 α (PGC1) were analyzed in the heart using Western blot. Cardiac forkhead box transcr...iption factor 1 (FOXO1) and sirtuin 1 (SIRT1) protein levels were also evaluated. Gene expression of long-chain acyl-CoA dehydrogenase was analyzed by quantitative polymerase chain reaction. Results: Exercise training has augmented the expression of main regulators of FA oxidation in the heart and achieves its effect by increasing the nuclear content of PPARα, Lipin1, and FOXO1 compared with the fructose group (P = 0.0422, P = 0.000045, P = 0.00958, respectively). In addition, Lipin1, FOXO1, and SIRT1 were increased in nuclear extract after exercise compared with the control group (P = 0.000043, P = 0.0417, P = 0.0329, respectively). In cardiac lysate, low-intensity exercise caused significantly increased protein level of PPARα, PGC1, FOXO1, and SIRT1 compared with control (P = 0.0377, P = 0.0275, P = 0.0096, P = 0.0282, respectively) and PGC1 level compared with the fructose group (P = 0.0417). Conclusion: The obtained results imply that the heart with a metabolic burden additionally relies on FA as an energy substrate after low-intensity running. © Copyright 2023, Mary Ann Liebert, Inc., publishers 2023.

Keywords:
exercise / fatty acid oxidation / FOXO1 / fructose-rich diet / heart / PPARα
Source:
Metabolic Syndrome and Related Disorders, 2023, 21, 2, 122-131
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)

DOI: 10.1089/met.2022.0078

ISSN: 1540-4196

PubMed: 36625880

Scopus: 2-s2.0-85150396444
[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10747
Collections
  • Radovi istraživača
  • 090 - Laboratorija za molekularnu biologiju i endokrinologiju
Institution/Community
Vinča
TY  - JOUR
AU  - Kostić, Milan
AU  - Korićanac, Goran
AU  - Tepavčević, Snežana
AU  - Stanišić, Jelena
AU  - Romić, Snježana Đ.
AU  - Ćulafić, Tijana
AU  - Ivković, Tamara
AU  - Stojiljković, Mojca D.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10747
AB  - Background and Aim: Excessive fructose consumption along with a sedentary lifestyle provokes metabolic disorders and cardiovascular diseases. Fructose overload causes cardiac insulin resistance and increases reliance on fatty acid (FA) uptake and catabolism. The cardiometabolic benefits of exercise training have long been appreciated. The goal of the presented study is to shed a new light to the preventive role of exercise training on cardiac lipid metabolism in fructose-fed rats. Methods: Male Wistar rats were divided into control (C), sedentary fructose (F), and exercised fructose (EF) groups. Fructose was given as a 10% fructose solution in drinking water for 9 weeks. Low-intensity exercise training was applied for 9 weeks. The protein expression and subcellular localization of Lipin1, peroxisome proliferator-activated receptor α (PPARα), and peroxisome proliferator-activated receptor-γcoactivator 1 α (PGC1) were analyzed in the heart using Western blot. Cardiac forkhead box transcription factor 1 (FOXO1) and sirtuin 1 (SIRT1) protein levels were also evaluated. Gene expression of long-chain acyl-CoA dehydrogenase was analyzed by quantitative polymerase chain reaction. Results: Exercise training has augmented the expression of main regulators of FA oxidation in the heart and achieves its effect by increasing the nuclear content of PPARα, Lipin1, and FOXO1 compared with the fructose group (P = 0.0422, P = 0.000045, P = 0.00958, respectively). In addition, Lipin1, FOXO1, and SIRT1 were increased in nuclear extract after exercise compared with the control group (P = 0.000043, P = 0.0417, P = 0.0329, respectively). In cardiac lysate, low-intensity exercise caused significantly increased protein level of PPARα, PGC1, FOXO1, and SIRT1 compared with control (P = 0.0377, P = 0.0275, P = 0.0096, P = 0.0282, respectively) and PGC1 level compared with the fructose group (P = 0.0417). Conclusion: The obtained results imply that the heart with a metabolic burden additionally relies on FA as an energy substrate after low-intensity running. © Copyright 2023, Mary Ann Liebert, Inc., publishers 2023.
T2  - Metabolic Syndrome and Related Disorders
T1  - Low-Intensity Exercise Affects Cardiac Fatty Acid Oxidation by Increasing the Nuclear Content of PPARα, FOXO1, and Lipin1 in Fructose-Fed Rats
VL  - 21
IS  - 2
SP  - 122
EP  - 131
DO  - 10.1089/met.2022.0078
ER  - 
@article{
author = "Kostić, Milan and Korićanac, Goran and Tepavčević, Snežana and Stanišić, Jelena and Romić, Snježana Đ. and Ćulafić, Tijana and Ivković, Tamara and Stojiljković, Mojca D.",
year = "2023",
abstract = "Background and Aim: Excessive fructose consumption along with a sedentary lifestyle provokes metabolic disorders and cardiovascular diseases. Fructose overload causes cardiac insulin resistance and increases reliance on fatty acid (FA) uptake and catabolism. The cardiometabolic benefits of exercise training have long been appreciated. The goal of the presented study is to shed a new light to the preventive role of exercise training on cardiac lipid metabolism in fructose-fed rats. Methods: Male Wistar rats were divided into control (C), sedentary fructose (F), and exercised fructose (EF) groups. Fructose was given as a 10% fructose solution in drinking water for 9 weeks. Low-intensity exercise training was applied for 9 weeks. The protein expression and subcellular localization of Lipin1, peroxisome proliferator-activated receptor α (PPARα), and peroxisome proliferator-activated receptor-γcoactivator 1 α (PGC1) were analyzed in the heart using Western blot. Cardiac forkhead box transcription factor 1 (FOXO1) and sirtuin 1 (SIRT1) protein levels were also evaluated. Gene expression of long-chain acyl-CoA dehydrogenase was analyzed by quantitative polymerase chain reaction. Results: Exercise training has augmented the expression of main regulators of FA oxidation in the heart and achieves its effect by increasing the nuclear content of PPARα, Lipin1, and FOXO1 compared with the fructose group (P = 0.0422, P = 0.000045, P = 0.00958, respectively). In addition, Lipin1, FOXO1, and SIRT1 were increased in nuclear extract after exercise compared with the control group (P = 0.000043, P = 0.0417, P = 0.0329, respectively). In cardiac lysate, low-intensity exercise caused significantly increased protein level of PPARα, PGC1, FOXO1, and SIRT1 compared with control (P = 0.0377, P = 0.0275, P = 0.0096, P = 0.0282, respectively) and PGC1 level compared with the fructose group (P = 0.0417). Conclusion: The obtained results imply that the heart with a metabolic burden additionally relies on FA as an energy substrate after low-intensity running. © Copyright 2023, Mary Ann Liebert, Inc., publishers 2023.",
journal = "Metabolic Syndrome and Related Disorders",
title = "Low-Intensity Exercise Affects Cardiac Fatty Acid Oxidation by Increasing the Nuclear Content of PPARα, FOXO1, and Lipin1 in Fructose-Fed Rats",
volume = "21",
number = "2",
pages = "122-131",
doi = "10.1089/met.2022.0078"
}
Kostić, M., Korićanac, G., Tepavčević, S., Stanišić, J., Romić, S. Đ., Ćulafić, T., Ivković, T.,& Stojiljković, M. D.. (2023). Low-Intensity Exercise Affects Cardiac Fatty Acid Oxidation by Increasing the Nuclear Content of PPARα, FOXO1, and Lipin1 in Fructose-Fed Rats. in Metabolic Syndrome and Related Disorders, 21(2), 122-131.
https://doi.org/10.1089/met.2022.0078
Kostić M, Korićanac G, Tepavčević S, Stanišić J, Romić SĐ, Ćulafić T, Ivković T, Stojiljković MD. Low-Intensity Exercise Affects Cardiac Fatty Acid Oxidation by Increasing the Nuclear Content of PPARα, FOXO1, and Lipin1 in Fructose-Fed Rats. in Metabolic Syndrome and Related Disorders. 2023;21(2):122-131.
doi:10.1089/met.2022.0078 .
Kostić, Milan, Korićanac, Goran, Tepavčević, Snežana, Stanišić, Jelena, Romić, Snježana Đ., Ćulafić, Tijana, Ivković, Tamara, Stojiljković, Mojca D., "Low-Intensity Exercise Affects Cardiac Fatty Acid Oxidation by Increasing the Nuclear Content of PPARα, FOXO1, and Lipin1 in Fructose-Fed Rats" in Metabolic Syndrome and Related Disorders, 21, no. 2 (2023):122-131,
https://doi.org/10.1089/met.2022.0078 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB