VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-density optical interconnects based on self-imaging in coupled waveguide arrays

Authorized Users Only
2023
Authors
Petrović, Jovana S.
Kršić, Jelena
Maluckov, Aleksandra
Veerman, J.J.P.
Article (Published version)
Metadata
Show full item record
Abstract
Rapidly increasing demand for higher data bandwidths has motivated exploration of new communication channels based on spatially multiplexed in-fibre and on-chip coupled light guides. However, the conventionally used periodically arranged coupled waveguides display complicated light propagation patterns, ranging from quasiperiodic to nearly chaotic. Taking a different approach, we spectrally engineer interwaveguide coupling to instigate self-imaging of the input light state at the array output and thus enable construction of novel high-fidelity interconnects. Simple implementation via modulation of the interwaveguide separations makes these interconnects realizable in all fabrication platforms. Their competitive advantages are negligible crosstalk-induced information loss, high density that exceeds the current standards by an order of magnitude, and compatibility with both classical and quantum information encoding schemes. Moreover, the wavelength-dependent self-imaging opens up new po...ssibilities for wavelength and spatial division demultiplexing. The proposed analytical designs are supported by extensive numerical simulations of silicon-on-insulator, silicon nitride and silica glass waveguide arrays, and a statistical feasibility study. © 2023 Elsevier Ltd

Keywords:
Crosstalk / Interconnects / Waveguide arrays
Source:
Optics & Laser Technology, 2023, 163, 109381-
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)

DOI: 10.1016/j.optlastec.2023.109381

ISSN: 0030-3992

Scopus: 2-s2.0-85150442302
[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10743
Collections
  • Radovi istraživača
  • 040 - Laboratorija za atomsku fiziku
Institution/Community
Vinča
TY  - JOUR
AU  - Petrović, Jovana S.
AU  - Kršić, Jelena
AU  - Maluckov, Aleksandra
AU  - Veerman, J.J.P.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10743
AB  - Rapidly increasing demand for higher data bandwidths has motivated exploration of new communication channels based on spatially multiplexed in-fibre and on-chip coupled light guides. However, the conventionally used periodically arranged coupled waveguides display complicated light propagation patterns, ranging from quasiperiodic to nearly chaotic. Taking a different approach, we spectrally engineer interwaveguide coupling to instigate self-imaging of the input light state at the array output and thus enable construction of novel high-fidelity interconnects. Simple implementation via modulation of the interwaveguide separations makes these interconnects realizable in all fabrication platforms. Their competitive advantages are negligible crosstalk-induced information loss, high density that exceeds the current standards by an order of magnitude, and compatibility with both classical and quantum information encoding schemes. Moreover, the wavelength-dependent self-imaging opens up new possibilities for wavelength and spatial division demultiplexing. The proposed analytical designs are supported by extensive numerical simulations of silicon-on-insulator, silicon nitride and silica glass waveguide arrays, and a statistical feasibility study. © 2023 Elsevier Ltd
T2  - Optics & Laser Technology
T1  - High-density optical interconnects based on self-imaging in coupled waveguide arrays
VL  - 163
SP  - 109381
DO  - 10.1016/j.optlastec.2023.109381
ER  - 
@article{
author = "Petrović, Jovana S. and Kršić, Jelena and Maluckov, Aleksandra and Veerman, J.J.P.",
year = "2023",
abstract = "Rapidly increasing demand for higher data bandwidths has motivated exploration of new communication channels based on spatially multiplexed in-fibre and on-chip coupled light guides. However, the conventionally used periodically arranged coupled waveguides display complicated light propagation patterns, ranging from quasiperiodic to nearly chaotic. Taking a different approach, we spectrally engineer interwaveguide coupling to instigate self-imaging of the input light state at the array output and thus enable construction of novel high-fidelity interconnects. Simple implementation via modulation of the interwaveguide separations makes these interconnects realizable in all fabrication platforms. Their competitive advantages are negligible crosstalk-induced information loss, high density that exceeds the current standards by an order of magnitude, and compatibility with both classical and quantum information encoding schemes. Moreover, the wavelength-dependent self-imaging opens up new possibilities for wavelength and spatial division demultiplexing. The proposed analytical designs are supported by extensive numerical simulations of silicon-on-insulator, silicon nitride and silica glass waveguide arrays, and a statistical feasibility study. © 2023 Elsevier Ltd",
journal = "Optics & Laser Technology",
title = "High-density optical interconnects based on self-imaging in coupled waveguide arrays",
volume = "163",
pages = "109381",
doi = "10.1016/j.optlastec.2023.109381"
}
Petrović, J. S., Kršić, J., Maluckov, A.,& Veerman, J.J.P.. (2023). High-density optical interconnects based on self-imaging in coupled waveguide arrays. in Optics & Laser Technology, 163, 109381.
https://doi.org/10.1016/j.optlastec.2023.109381
Petrović JS, Kršić J, Maluckov A, Veerman J. High-density optical interconnects based on self-imaging in coupled waveguide arrays. in Optics & Laser Technology. 2023;163:109381.
doi:10.1016/j.optlastec.2023.109381 .
Petrović, Jovana S., Kršić, Jelena, Maluckov, Aleksandra, Veerman, J.J.P., "High-density optical interconnects based on self-imaging in coupled waveguide arrays" in Optics & Laser Technology, 163 (2023):109381,
https://doi.org/10.1016/j.optlastec.2023.109381 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB