Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA
Authors
Mijajlović, AleksandarOgnjanović, Miloš

Manojlović, Dragan

Vlahović, Filip

Ðurđić, Slađana

Stanković, Vesna

Stanković, Dalibor M.

Article (Published version)
Metadata
Show full item recordAbstract
There are ten million people in the world who have Parkinson’s disease. The most potent medicine for Parkinson’s disease is levodopa (L-DOPA). However, long-term consumption of L-DOPA leads to the appearance of side effects, as a result of which the control and monitoring of its concentrations are of great importance. In this work, we have designed a new electrochemical sensor for detecting L-DOPA using a carbon paste electrode (CPE) modified with Eu2O3@Cr2O3 composite nanoparticles. Rare earth elements, including Eu, are increasingly used to design new electrode nanocomposites with enhanced electrocatalytic properties. Europium has been considered a significant lanthanide element with greater redox reaction behavior. We conducted a hydrothermal synthesis of Eu2O3@Cr2O3 and, for the first time, the acquired nanoparticles were used to modify CPE. The proposed Eu2O3@Cr2O3/CPE electrode was investigated in terms of its electrocatalytic properties and then used to develop an analytical met...hod for detecting and quantifying L-DOPA. The proposed sensor offers a wide linear range (1–100 µM), high sensitivity (1.38 µA µM−1 cm−2) and a low detection limit (0.72 µM). The practical application of the proposed sensor was investigated by analyzing commercially available pharmaceutical tablets of L-DOPA. The corresponding results indicate the excellent potential of the Eu2O3@Cr2O3/CPE sensor for application in real-time L-DOPA detection.
Keywords:
levodopa / electrochemical sensor / rare earth nanomaterial / hydrothermal synthesis / micromolar detectionSource:
Biosensors, 2023, 13, 2, 201-Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
- The Eureka project [E! 13303 MED-BIO-TEST (contract number 451-03-00053/2020-09/2/2)]
DOI: 10.3390/bios13020201
ISSN: 2079-6374
PubMed: 36831967
Scopus: 2-s2.0-85148965615
Collections
Institution/Community
VinčaTY - JOUR AU - Mijajlović, Aleksandar AU - Ognjanović, Miloš AU - Manojlović, Dragan AU - Vlahović, Filip AU - Ðurđić, Slađana AU - Stanković, Vesna AU - Stanković, Dalibor M. PY - 2023 UR - https://vinar.vin.bg.ac.rs/handle/123456789/10692 AB - There are ten million people in the world who have Parkinson’s disease. The most potent medicine for Parkinson’s disease is levodopa (L-DOPA). However, long-term consumption of L-DOPA leads to the appearance of side effects, as a result of which the control and monitoring of its concentrations are of great importance. In this work, we have designed a new electrochemical sensor for detecting L-DOPA using a carbon paste electrode (CPE) modified with Eu2O3@Cr2O3 composite nanoparticles. Rare earth elements, including Eu, are increasingly used to design new electrode nanocomposites with enhanced electrocatalytic properties. Europium has been considered a significant lanthanide element with greater redox reaction behavior. We conducted a hydrothermal synthesis of Eu2O3@Cr2O3 and, for the first time, the acquired nanoparticles were used to modify CPE. The proposed Eu2O3@Cr2O3/CPE electrode was investigated in terms of its electrocatalytic properties and then used to develop an analytical method for detecting and quantifying L-DOPA. The proposed sensor offers a wide linear range (1–100 µM), high sensitivity (1.38 µA µM−1 cm−2) and a low detection limit (0.72 µM). The practical application of the proposed sensor was investigated by analyzing commercially available pharmaceutical tablets of L-DOPA. The corresponding results indicate the excellent potential of the Eu2O3@Cr2O3/CPE sensor for application in real-time L-DOPA detection. T2 - Biosensors T1 - Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA VL - 13 IS - 2 SP - 201 DO - 10.3390/bios13020201 ER -
@article{ author = "Mijajlović, Aleksandar and Ognjanović, Miloš and Manojlović, Dragan and Vlahović, Filip and Ðurđić, Slađana and Stanković, Vesna and Stanković, Dalibor M.", year = "2023", abstract = "There are ten million people in the world who have Parkinson’s disease. The most potent medicine for Parkinson’s disease is levodopa (L-DOPA). However, long-term consumption of L-DOPA leads to the appearance of side effects, as a result of which the control and monitoring of its concentrations are of great importance. In this work, we have designed a new electrochemical sensor for detecting L-DOPA using a carbon paste electrode (CPE) modified with Eu2O3@Cr2O3 composite nanoparticles. Rare earth elements, including Eu, are increasingly used to design new electrode nanocomposites with enhanced electrocatalytic properties. Europium has been considered a significant lanthanide element with greater redox reaction behavior. We conducted a hydrothermal synthesis of Eu2O3@Cr2O3 and, for the first time, the acquired nanoparticles were used to modify CPE. The proposed Eu2O3@Cr2O3/CPE electrode was investigated in terms of its electrocatalytic properties and then used to develop an analytical method for detecting and quantifying L-DOPA. The proposed sensor offers a wide linear range (1–100 µM), high sensitivity (1.38 µA µM−1 cm−2) and a low detection limit (0.72 µM). The practical application of the proposed sensor was investigated by analyzing commercially available pharmaceutical tablets of L-DOPA. The corresponding results indicate the excellent potential of the Eu2O3@Cr2O3/CPE sensor for application in real-time L-DOPA detection.", journal = "Biosensors", title = "Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA", volume = "13", number = "2", pages = "201", doi = "10.3390/bios13020201" }
Mijajlović, A., Ognjanović, M., Manojlović, D., Vlahović, F., Ðurđić, S., Stanković, V.,& Stanković, D. M.. (2023). Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA. in Biosensors, 13(2), 201. https://doi.org/10.3390/bios13020201
Mijajlović A, Ognjanović M, Manojlović D, Vlahović F, Ðurđić S, Stanković V, Stanković DM. Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA. in Biosensors. 2023;13(2):201. doi:10.3390/bios13020201 .
Mijajlović, Aleksandar, Ognjanović, Miloš, Manojlović, Dragan, Vlahović, Filip, Ðurđić, Slađana, Stanković, Vesna, Stanković, Dalibor M., "Eu2O3@Cr2O3 Nanoparticles-Modified Carbon Paste Electrode for Efficient Electrochemical Sensing of Neurotransmitters Precursor L-DOPA" in Biosensors, 13, no. 2 (2023):201, https://doi.org/10.3390/bios13020201 . .