VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity

Thumbnail
2023
Main article [PDF] (4.553Mb)
Authors
Savić, Marjetka
Janošević Ležaić, Aleksandra
Gavrilov, Nemanja
Pašti, Igor
Nedić Vasiljević, Bojana
Krstić, Jugoslav
Ćirić-Marjanović, Gordana
Article (Published version)
Metadata
Show full item record
Abstract
Composites of carbons with metal oxides and metal sulfides have attracted a lot of interestas materials for energy conversion and storage applications. Herein, we report on novel N,O-dopedcarbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)),synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites.The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition,molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemicalbehavior. The composition and properties of C-(MOF-5/PANI) composites are dictated bythe composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES)or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due toS-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystallinephases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s w...ith high SBET (up to609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 Fg−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etchingtreatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively.The developed composites represent promising electrode materials for supercapacitors.

Keywords:
N,O-doped carbon / capacitance / carbonization / composite / MOF-5 / polyaniline / ZnO / ZnS / surface area
Source:
Materials, 2023, 16, 3, 1018-
Funding / projects:
  • AdConPolyMat - Advanced Conducting Polymer-Based Materials for Electrochemical Energy Conversion and Storage, Sensors and Environmental Protection (RS-7750219)
Note:
  • This article belongs to the Special Issue Advanced Materials for Electrochemical Energy Conversion and Storage - Volume II

DOI: 10.3390/ma16031018

ISSN: 1996-1944

Scopus: 2-s2.0-85147847348
[ Google Scholar ]
1
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10645
Collections
  • Radovi istraživača
  • 060 - Laboratorija za hemijsku dinamiku i permanentno obrazovanje
Institution/Community
Vinča
TY  - JOUR
AU  - Savić, Marjetka
AU  - Janošević Ležaić, Aleksandra
AU  - Gavrilov, Nemanja
AU  - Pašti, Igor
AU  - Nedić Vasiljević, Bojana
AU  - Krstić, Jugoslav
AU  - Ćirić-Marjanović, Gordana
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10645
AB  - Composites of carbons with metal oxides and metal sulfides have attracted a lot of interestas materials for energy conversion and storage applications. Herein, we report on novel N,O-dopedcarbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)),synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites.The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition,molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemicalbehavior. The composition and properties of C-(MOF-5/PANI) composites are dictated bythe composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES)or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due toS-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystallinephases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 Fg−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etchingtreatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively.The developed composites represent promising electrode materials for supercapacitors.
T2  - Materials
T1  - Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity
VL  - 16
IS  - 3
SP  - 1018
DO  - 10.3390/ma16031018
ER  - 
@article{
author = "Savić, Marjetka and Janošević Ležaić, Aleksandra and Gavrilov, Nemanja and Pašti, Igor and Nedić Vasiljević, Bojana and Krstić, Jugoslav and Ćirić-Marjanović, Gordana",
year = "2023",
abstract = "Composites of carbons with metal oxides and metal sulfides have attracted a lot of interestas materials for energy conversion and storage applications. Herein, we report on novel N,O-dopedcarbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)),synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites.The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition,molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemicalbehavior. The composition and properties of C-(MOF-5/PANI) composites are dictated bythe composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES)or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due toS-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystallinephases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 Fg−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etchingtreatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively.The developed composites represent promising electrode materials for supercapacitors.",
journal = "Materials",
title = "Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity",
volume = "16",
number = "3",
pages = "1018",
doi = "10.3390/ma16031018"
}
Savić, M., Janošević Ležaić, A., Gavrilov, N., Pašti, I., Nedić Vasiljević, B., Krstić, J.,& Ćirić-Marjanović, G.. (2023). Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. in Materials, 16(3), 1018.
https://doi.org/10.3390/ma16031018
Savić M, Janošević Ležaić A, Gavrilov N, Pašti I, Nedić Vasiljević B, Krstić J, Ćirić-Marjanović G. Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. in Materials. 2023;16(3):1018.
doi:10.3390/ma16031018 .
Savić, Marjetka, Janošević Ležaić, Aleksandra, Gavrilov, Nemanja, Pašti, Igor, Nedić Vasiljević, Bojana, Krstić, Jugoslav, Ćirić-Marjanović, Gordana, "Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity" in Materials, 16, no. 3 (2023):1018,
https://doi.org/10.3390/ma16031018 . .

Related items

Showing items related by title, author, creator and subject.

  • The effect of partially carbonized fibers on the mechanical properties of carbon/carbon composites 

    Kaluđerović, Branka V.; Kljajević, Ljiljana M.; Laušević, Zoran (Journal of Materials Processing Technology, 2012)
  • Photoluminescence of carbon-based nanomaterials: Fullerenes, carbon nanotubes, graphene, graphene oxide, graphene and carbon quantum dots 

    Jovanović, Svetlana P. (Nova Science Publishers, 2018)
  • Characterization of a surface modified carbon cryogel and a carbon supported Pt catalyst 

    Babić, Biljana M.; Kaluđerović, Branka V.; Vracar, Ljiljana M.; Radmilovic, Velimir; Krstajic, Nedeljko V. (Journal of the Serbian Chemical Society, 2007)

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB