ВинаР - Репозиторијум Института за нуклеарне науке Винча
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots

Thumbnail
2022
Преузимање 🢃
Main article [PDF] (7.535Mb)
Аутори
Jovanović, Svetlana P.
Bonasera, Aurelio
Dorontić, Slađana
Zmejkoski, Danica
Milivojević, Dušan
Janakiev, Tamara
Todorović-Marković, Biljana
Чланак у часопису (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
Due to the increasing number of bacterial infections and the development of resistivity toward antibiotics, new materials and approaches for treatments must be urgently developed. The production of new materials should be ecologically friendly considering overall pollution with chemicals and economically acceptable and accessible to the wide population. Thus, the possibility of using biocompatible graphene quantum dots (GQDs) as an agent in photodynamic therapy was studied. First, dots were obtained using electrochemical cutting of graphite. In only one synthetic step using gamma irradiation, GQDs were doped with N atoms without any reagent. Obtained dots showed blue photoluminescence, with a diameter of 19–89 nm and optical band gap of 3.23–4.73 eV, featuring oxygen-containing, amino, and amide functional groups. Dots showed antioxidative activity; they quenched •OH at a concentration of 10 μg·mL−1, scavenged DPPH• radicals even at 5 μg·mL−1, and caused discoloration of KMnO4 at 30 μg...·mL−1. Under light irradiation, dots were able to produce singlet oxygen, which remained stable for 10 min. Photoinduced effects by GQDs were studied on several bacterial strains (Listeria monocytogenes, Bacillus cereus, clinical strains of Streptococcus mutans, S. pyogenes, and S. sangunis, Pseudomonas aeruginosa, and one yeast strain Candida albicans) but antibacterial effects were not noticed.

Кључне речи:
antibacterial effects / antioxidant / gamma-irradiation / graphene quantum dots / N-doping / photodynamic therapy / photoluminescence
Извор:
Materials, 2022, 15, 19, 6525-
Финансирање / пројекти:
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200017 (Универзитет у Београду, Институт за нуклеарне науке Винча, Београд-Винча) (RS-MESTD-inst-2020-200017)
  • Министарство науке, технолошког развоја и иновација Републике Србије, институционално финансирање - 200178 (Универзитет у Београду, Биолошки факултет) (RS-MESTD-inst-2020-200178)
  • 2023-07-17 PHOTOGUN4MICROBES - Are photoactive nanoparticles salvation for global infectional treath? (RS-ScienceFundRS-Ideje-7741955)

DOI: 10.3390/ma15196525

ISSN: 1996-1944

PubMed: 36233866

WoS: 000866880600001

Scopus: 2-s2.0-85139977937
[ Google Scholar ]
5
4
4
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10633
Колекције
  • 030 - Laboratorija za radijacionu hemiju i fiziku
  • Radovi istraživača
  • PHOTOGUN4MICROBES
Институција/група
Vinča
TY  - JOUR
AU  - Jovanović, Svetlana P.
AU  - Bonasera, Aurelio
AU  - Dorontić, Slađana
AU  - Zmejkoski, Danica
AU  - Milivojević, Dušan
AU  - Janakiev, Tamara
AU  - Todorović-Marković, Biljana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10633
AB  - Due to the increasing number of bacterial infections and the development of resistivity toward antibiotics, new materials and approaches for treatments must be urgently developed. The production of new materials should be ecologically friendly considering overall pollution with chemicals and economically acceptable and accessible to the wide population. Thus, the possibility of using biocompatible graphene quantum dots (GQDs) as an agent in photodynamic therapy was studied. First, dots were obtained using electrochemical cutting of graphite. In only one synthetic step using gamma irradiation, GQDs were doped with N atoms without any reagent. Obtained dots showed blue photoluminescence, with a diameter of 19–89 nm and optical band gap of 3.23–4.73 eV, featuring oxygen-containing, amino, and amide functional groups. Dots showed antioxidative activity; they quenched •OH at a concentration of 10 μg·mL−1, scavenged DPPH• radicals even at 5 μg·mL−1, and caused discoloration of KMnO4 at 30 μg·mL−1. Under light irradiation, dots were able to produce singlet oxygen, which remained stable for 10 min. Photoinduced effects by GQDs were studied on several bacterial strains (Listeria monocytogenes, Bacillus cereus, clinical strains of Streptococcus mutans, S. pyogenes, and S. sangunis, Pseudomonas aeruginosa, and one yeast strain Candida albicans) but antibacterial effects were not noticed.
T2  - Materials
T1  - Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots
VL  - 15
IS  - 19
SP  - 6525
DO  - 10.3390/ma15196525
ER  - 
@article{
author = "Jovanović, Svetlana P. and Bonasera, Aurelio and Dorontić, Slađana and Zmejkoski, Danica and Milivojević, Dušan and Janakiev, Tamara and Todorović-Marković, Biljana",
year = "2022",
abstract = "Due to the increasing number of bacterial infections and the development of resistivity toward antibiotics, new materials and approaches for treatments must be urgently developed. The production of new materials should be ecologically friendly considering overall pollution with chemicals and economically acceptable and accessible to the wide population. Thus, the possibility of using biocompatible graphene quantum dots (GQDs) as an agent in photodynamic therapy was studied. First, dots were obtained using electrochemical cutting of graphite. In only one synthetic step using gamma irradiation, GQDs were doped with N atoms without any reagent. Obtained dots showed blue photoluminescence, with a diameter of 19–89 nm and optical band gap of 3.23–4.73 eV, featuring oxygen-containing, amino, and amide functional groups. Dots showed antioxidative activity; they quenched •OH at a concentration of 10 μg·mL−1, scavenged DPPH• radicals even at 5 μg·mL−1, and caused discoloration of KMnO4 at 30 μg·mL−1. Under light irradiation, dots were able to produce singlet oxygen, which remained stable for 10 min. Photoinduced effects by GQDs were studied on several bacterial strains (Listeria monocytogenes, Bacillus cereus, clinical strains of Streptococcus mutans, S. pyogenes, and S. sangunis, Pseudomonas aeruginosa, and one yeast strain Candida albicans) but antibacterial effects were not noticed.",
journal = "Materials",
title = "Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots",
volume = "15",
number = "19",
pages = "6525",
doi = "10.3390/ma15196525"
}
Jovanović, S. P., Bonasera, A., Dorontić, S., Zmejkoski, D., Milivojević, D., Janakiev, T.,& Todorović-Marković, B.. (2022). Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots. in Materials, 15(19), 6525.
https://doi.org/10.3390/ma15196525
Jovanović SP, Bonasera A, Dorontić S, Zmejkoski D, Milivojević D, Janakiev T, Todorović-Marković B. Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots. in Materials. 2022;15(19):6525.
doi:10.3390/ma15196525 .
Jovanović, Svetlana P., Bonasera, Aurelio, Dorontić, Slađana, Zmejkoski, Danica, Milivojević, Dušan, Janakiev, Tamara, Todorović-Marković, Biljana, "Antioxidative and Photo-Induced Effects of Different Types of N-Doped Graphene Quantum Dots" in Materials, 15, no. 19 (2022):6525,
https://doi.org/10.3390/ma15196525 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB