VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Erosion Wear Behavior of High Chromium Cast Irons

Authorized Users Only
2023
Authors
Rajičić, Bratislav
Maslarević, Aleksandar
Bakić, Gordana
Maksimović, Vesna
Đukić, Miloš B.
Article (Published version)
Metadata
Show full item record
Abstract
In this study, two high chromium cast irons (HCCI) with different chromium content (15%Cr and 25%Cr), in as-cast and annealed conditions (heat-treated, HT), were tested to determine the erosion wear behavior of these alloys. Erosion tests were done using a gas blast sand facility with high erodent particle velocity (90 m/s) and high erodent feed rate, at an impact angle of 45°, which represents conditions similar to service conditions of some components of thermal power plants using pulverized high mineral content coals. To identify erosion mechanisms, microstructural characterization was done by a scanning electron microscope on samples before and after erosion tests. Identification of microstructural phases was done by X-ray diffraction analysis. The main results of the tests shown in this paper indicate that matrix plastic deformation and distribution of carbide phase have a significant contribution to erosion resistance of HCCI alloys in severe erosion service conditions.
Keywords:
High chromium cast irons / Erosion / Wear / Erosion mechanisms
Source:
Transactions of the Indian Institute of Metals, 2023
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200105 (University of Belgrade, Faculty of Mechanical Engineering) (RS-200105)

DOI: 10.1007/s12666-022-02860-7

ISSN: 0975-1645

Scopus: 2-s2.0-85146233047
[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10614
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Rajičić, Bratislav
AU  - Maslarević, Aleksandar
AU  - Bakić, Gordana
AU  - Maksimović, Vesna
AU  - Đukić, Miloš B.
PY  - 2023
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10614
AB  - In this study, two high chromium cast irons (HCCI) with different chromium content (15%Cr and 25%Cr), in as-cast and annealed conditions (heat-treated, HT), were tested to determine the erosion wear behavior of these alloys. Erosion tests were done using a gas blast sand facility with high erodent particle velocity (90 m/s) and high erodent feed rate, at an impact angle of 45°, which represents conditions similar to service conditions of some components of thermal power plants using pulverized high mineral content coals. To identify erosion mechanisms, microstructural characterization was done by a scanning electron microscope on samples before and after erosion tests. Identification of microstructural phases was done by X-ray diffraction analysis. The main results of the tests shown in this paper indicate that matrix plastic deformation and distribution of carbide phase have a significant contribution to erosion resistance of HCCI alloys in severe erosion service conditions.
T2  - Transactions of the Indian Institute of Metals
T1  - Erosion Wear Behavior of High Chromium Cast Irons
DO  - 10.1007/s12666-022-02860-7
ER  - 
@article{
author = "Rajičić, Bratislav and Maslarević, Aleksandar and Bakić, Gordana and Maksimović, Vesna and Đukić, Miloš B.",
year = "2023",
abstract = "In this study, two high chromium cast irons (HCCI) with different chromium content (15%Cr and 25%Cr), in as-cast and annealed conditions (heat-treated, HT), were tested to determine the erosion wear behavior of these alloys. Erosion tests were done using a gas blast sand facility with high erodent particle velocity (90 m/s) and high erodent feed rate, at an impact angle of 45°, which represents conditions similar to service conditions of some components of thermal power plants using pulverized high mineral content coals. To identify erosion mechanisms, microstructural characterization was done by a scanning electron microscope on samples before and after erosion tests. Identification of microstructural phases was done by X-ray diffraction analysis. The main results of the tests shown in this paper indicate that matrix plastic deformation and distribution of carbide phase have a significant contribution to erosion resistance of HCCI alloys in severe erosion service conditions.",
journal = "Transactions of the Indian Institute of Metals",
title = "Erosion Wear Behavior of High Chromium Cast Irons",
doi = "10.1007/s12666-022-02860-7"
}
Rajičić, B., Maslarević, A., Bakić, G., Maksimović, V.,& Đukić, M. B.. (2023). Erosion Wear Behavior of High Chromium Cast Irons. in Transactions of the Indian Institute of Metals.
https://doi.org/10.1007/s12666-022-02860-7
Rajičić B, Maslarević A, Bakić G, Maksimović V, Đukić MB. Erosion Wear Behavior of High Chromium Cast Irons. in Transactions of the Indian Institute of Metals. 2023;.
doi:10.1007/s12666-022-02860-7 .
Rajičić, Bratislav, Maslarević, Aleksandar, Bakić, Gordana, Maksimović, Vesna, Đukić, Miloš B., "Erosion Wear Behavior of High Chromium Cast Irons" in Transactions of the Indian Institute of Metals (2023),
https://doi.org/10.1007/s12666-022-02860-7 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB