Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles
Authors
Milićević, Bojana R.
Periša, Jovana

Ristić, Zoran

Milenković, Katarina
Antić, Željka

Smits, Krisjanis

Kemere, Meldra
Vitols, Kaspars
Sarakovskis, Anatolijs

Dramićanin, Miroslav

Article (Published version)
Metadata
Show full item recordAbstract
We report the procedure for hydrothermal synthesis of ultrasmall Yb3+/Tm3+ co-doped Sr2LaF7 (SLF) upconversion phosphors. These phosphors were synthesized by varying the concentrations of Yb3+ (x = 10, 15, 20, and 25 mol%) and Tm3+ (y = 0.75, 1, 2, and 3 mol%) with the aim to analyze their emissions in the near IR spectral range. According to the detailed structural analysis, Yb3+ and Tm3+ occupy the La3+ sites in the SLF host. The addition of Yb3+/Tm3+ ions has a huge impact on the lattice constant, particle size, and PL emission properties of the synthesized SLF nanophosphor. The results show that the optimal dopant concentrations for upconversion luminescence of Yb3+/Tm3+ co-doped SLF are 20 mol% Yb3+ and 1 mol% Tm3+ with EDTA as the chelating agent. Under 980 nm light excitation, a strong upconversion emission of Tm3+ ions around 800 nm was achieved. In addition, the experimental photoluminescence lifetime of Tm3+ emission in the SLF host is reported. This study discovered that eff...icient near IR emission from ultrasmall Yb3+/Tm3+ co-doped SLF phosphors may have potential applications in the fields of fluorescent labels in bioimaging and security applications.
Keywords:
fluoride / morphology / nanophosphor / NIR emission / Tm3+ emission / upconversionSource:
Nanomaterials, 2023, 13, 1, 30-Funding / projects:
- Ministry of Science, Technological Development and Innovation of the Republic of Serbia and the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 [Grant No. 739508] - project CAMART2
Institution/Community
VinčaTY - JOUR AU - Milićević, Bojana R. AU - Periša, Jovana AU - Ristić, Zoran AU - Milenković, Katarina AU - Antić, Željka AU - Smits, Krisjanis AU - Kemere, Meldra AU - Vitols, Kaspars AU - Sarakovskis, Anatolijs AU - Dramićanin, Miroslav PY - 2023 UR - https://vinar.vin.bg.ac.rs/handle/123456789/10590 AB - We report the procedure for hydrothermal synthesis of ultrasmall Yb3+/Tm3+ co-doped Sr2LaF7 (SLF) upconversion phosphors. These phosphors were synthesized by varying the concentrations of Yb3+ (x = 10, 15, 20, and 25 mol%) and Tm3+ (y = 0.75, 1, 2, and 3 mol%) with the aim to analyze their emissions in the near IR spectral range. According to the detailed structural analysis, Yb3+ and Tm3+ occupy the La3+ sites in the SLF host. The addition of Yb3+/Tm3+ ions has a huge impact on the lattice constant, particle size, and PL emission properties of the synthesized SLF nanophosphor. The results show that the optimal dopant concentrations for upconversion luminescence of Yb3+/Tm3+ co-doped SLF are 20 mol% Yb3+ and 1 mol% Tm3+ with EDTA as the chelating agent. Under 980 nm light excitation, a strong upconversion emission of Tm3+ ions around 800 nm was achieved. In addition, the experimental photoluminescence lifetime of Tm3+ emission in the SLF host is reported. This study discovered that efficient near IR emission from ultrasmall Yb3+/Tm3+ co-doped SLF phosphors may have potential applications in the fields of fluorescent labels in bioimaging and security applications. T2 - Nanomaterials T1 - Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles VL - 13 IS - 1 SP - 30 DO - 10.3390/nano13010030 ER -
@article{ author = "Milićević, Bojana R. and Periša, Jovana and Ristić, Zoran and Milenković, Katarina and Antić, Željka and Smits, Krisjanis and Kemere, Meldra and Vitols, Kaspars and Sarakovskis, Anatolijs and Dramićanin, Miroslav", year = "2023", abstract = "We report the procedure for hydrothermal synthesis of ultrasmall Yb3+/Tm3+ co-doped Sr2LaF7 (SLF) upconversion phosphors. These phosphors were synthesized by varying the concentrations of Yb3+ (x = 10, 15, 20, and 25 mol%) and Tm3+ (y = 0.75, 1, 2, and 3 mol%) with the aim to analyze their emissions in the near IR spectral range. According to the detailed structural analysis, Yb3+ and Tm3+ occupy the La3+ sites in the SLF host. The addition of Yb3+/Tm3+ ions has a huge impact on the lattice constant, particle size, and PL emission properties of the synthesized SLF nanophosphor. The results show that the optimal dopant concentrations for upconversion luminescence of Yb3+/Tm3+ co-doped SLF are 20 mol% Yb3+ and 1 mol% Tm3+ with EDTA as the chelating agent. Under 980 nm light excitation, a strong upconversion emission of Tm3+ ions around 800 nm was achieved. In addition, the experimental photoluminescence lifetime of Tm3+ emission in the SLF host is reported. This study discovered that efficient near IR emission from ultrasmall Yb3+/Tm3+ co-doped SLF phosphors may have potential applications in the fields of fluorescent labels in bioimaging and security applications.", journal = "Nanomaterials", title = "Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles", volume = "13", number = "1", pages = "30", doi = "10.3390/nano13010030" }
Milićević, B. R., Periša, J., Ristić, Z., Milenković, K., Antić, Ž., Smits, K., Kemere, M., Vitols, K., Sarakovskis, A.,& Dramićanin, M.. (2023). Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles. in Nanomaterials, 13(1), 30. https://doi.org/10.3390/nano13010030
Milićević BR, Periša J, Ristić Z, Milenković K, Antić Ž, Smits K, Kemere M, Vitols K, Sarakovskis A, Dramićanin M. Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles. in Nanomaterials. 2023;13(1):30. doi:10.3390/nano13010030 .
Milićević, Bojana R., Periša, Jovana, Ristić, Zoran, Milenković, Katarina, Antić, Željka, Smits, Krisjanis, Kemere, Meldra, Vitols, Kaspars, Sarakovskis, Anatolijs, Dramićanin, Miroslav, "Hydrothermal Synthesis and Properties of Yb3+/Tm3+ Doped Sr2LaF7 Upconversion Nanoparticles" in Nanomaterials, 13, no. 1 (2023):30, https://doi.org/10.3390/nano13010030 . .