Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion
Authorized Users Only
2023
Authors
Stamenković, Tijana
Radmilović, Nadežda

Prekajski-Đorđević, Marija D.

Rabasović, Mihailo

Dinić, Ivana

Tomić, Miloš
Lojpur, Vesna

Mančić, Lidija

Article (Published version)

Metadata
Show full item recordAbstract
Nanopowders of up-conversion SrGd2O4 orthorhombic (Pnma) phase co-doped with different Yb3+ (1, 2.5 and 5 at%) and constant Er3+ (0.5 at%) ions were successfully prepared via sol-gel assisted combustion. Rietveld refinement indicated unit cell lattice parameters increase with Yb3+ and Er3+ ions doping. Scanning transmission electron microscopy with corresponding energy-dispersive X-ray spectroscopy revealed that obtained powders are composed of agglomerated nanoparticles that have a uniform distribution of all constituting elements. Photoluminescence measurements implied intensification of the up-conversion (UC) emission in the visible part of spectrum with the increase of Yb3+ content, which is followed by a significant change in the green to red ratio. Two-photon UC processes are established as a result of Er3+ f-f electronic transitions: green emission at 523 and 551 nm (2H11/2, 4S3/2 → 4I15/2) as well as a red emission at 661 nm (4F9/2 → 4I15/2). The highest value of absolute quant...um yield of 0.055% is determined for SrGd2O4 nanoparticles doped with 0.5 at% of Er3+ and co-doped with 5 at% of Yb3+ (λexc = 976 nm, power density 200 W/cm2).
Keywords:
Energy transfer / Quantum yield / SrGdO:Yb, Er structure / Up-conversionSource:
Journal of Luminescence, 2023, 253, 119491-Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia [No. 0402211 and No.1702201]
Collections
Institution/Community
VinčaTY - JOUR AU - Stamenković, Tijana AU - Radmilović, Nadežda AU - Prekajski-Đorđević, Marija D. AU - Rabasović, Mihailo AU - Dinić, Ivana AU - Tomić, Miloš AU - Lojpur, Vesna AU - Mančić, Lidija PY - 2023 UR - https://vinar.vin.bg.ac.rs/handle/123456789/10499 AB - Nanopowders of up-conversion SrGd2O4 orthorhombic (Pnma) phase co-doped with different Yb3+ (1, 2.5 and 5 at%) and constant Er3+ (0.5 at%) ions were successfully prepared via sol-gel assisted combustion. Rietveld refinement indicated unit cell lattice parameters increase with Yb3+ and Er3+ ions doping. Scanning transmission electron microscopy with corresponding energy-dispersive X-ray spectroscopy revealed that obtained powders are composed of agglomerated nanoparticles that have a uniform distribution of all constituting elements. Photoluminescence measurements implied intensification of the up-conversion (UC) emission in the visible part of spectrum with the increase of Yb3+ content, which is followed by a significant change in the green to red ratio. Two-photon UC processes are established as a result of Er3+ f-f electronic transitions: green emission at 523 and 551 nm (2H11/2, 4S3/2 → 4I15/2) as well as a red emission at 661 nm (4F9/2 → 4I15/2). The highest value of absolute quantum yield of 0.055% is determined for SrGd2O4 nanoparticles doped with 0.5 at% of Er3+ and co-doped with 5 at% of Yb3+ (λexc = 976 nm, power density 200 W/cm2). T2 - Journal of Luminescence T1 - Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion VL - 253 SP - 119491 DO - 10.1016/j.jlumin.2022.119491 ER -
@article{ author = "Stamenković, Tijana and Radmilović, Nadežda and Prekajski-Đorđević, Marija D. and Rabasović, Mihailo and Dinić, Ivana and Tomić, Miloš and Lojpur, Vesna and Mančić, Lidija", year = "2023", abstract = "Nanopowders of up-conversion SrGd2O4 orthorhombic (Pnma) phase co-doped with different Yb3+ (1, 2.5 and 5 at%) and constant Er3+ (0.5 at%) ions were successfully prepared via sol-gel assisted combustion. Rietveld refinement indicated unit cell lattice parameters increase with Yb3+ and Er3+ ions doping. Scanning transmission electron microscopy with corresponding energy-dispersive X-ray spectroscopy revealed that obtained powders are composed of agglomerated nanoparticles that have a uniform distribution of all constituting elements. Photoluminescence measurements implied intensification of the up-conversion (UC) emission in the visible part of spectrum with the increase of Yb3+ content, which is followed by a significant change in the green to red ratio. Two-photon UC processes are established as a result of Er3+ f-f electronic transitions: green emission at 523 and 551 nm (2H11/2, 4S3/2 → 4I15/2) as well as a red emission at 661 nm (4F9/2 → 4I15/2). The highest value of absolute quantum yield of 0.055% is determined for SrGd2O4 nanoparticles doped with 0.5 at% of Er3+ and co-doped with 5 at% of Yb3+ (λexc = 976 nm, power density 200 W/cm2).", journal = "Journal of Luminescence", title = "Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion", volume = "253", pages = "119491", doi = "10.1016/j.jlumin.2022.119491" }
Stamenković, T., Radmilović, N., Prekajski-Đorđević, M. D., Rabasović, M., Dinić, I., Tomić, M., Lojpur, V.,& Mančić, L.. (2023). Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion. in Journal of Luminescence, 253, 119491. https://doi.org/10.1016/j.jlumin.2022.119491
Stamenković T, Radmilović N, Prekajski-Đorđević MD, Rabasović M, Dinić I, Tomić M, Lojpur V, Mančić L. Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion. in Journal of Luminescence. 2023;253:119491. doi:10.1016/j.jlumin.2022.119491 .
Stamenković, Tijana, Radmilović, Nadežda, Prekajski-Đorđević, Marija D., Rabasović, Mihailo, Dinić, Ivana, Tomić, Miloš, Lojpur, Vesna, Mančić, Lidija, "Quantum yield and energy transfer in up-conversion SrGd2O4:Yb, Er nanoparticles obtained via sol-gel assisted combustion" in Journal of Luminescence, 253 (2023):119491, https://doi.org/10.1016/j.jlumin.2022.119491 . .