VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
  •   Vinar
  • Vinča
  • WoS Import
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fullerenol nanoparticles as a new delivery system for doxorubicin

Authorized Users Only
2016
Authors
Jović, Danica S.
Seke, Mariana
Đorđević, Aleksandar N.
Mrđanović, Jasminka Ž.
Aleksić, Lidija D.
Bogdanović, Gordana M.
Pavić, Aleksandar B.
Plavec, Janez
Article (Published version)
Metadata
Show full item record
Abstract
Doxorubicin is a very potent chemotherapeutic drug, however its side effects limit its clinical use. The aim of this research was to investigate the properties of a fullerenol/doxorubicin nanocomposite, its potentially cytotoxic and genotoxic effects on malignant cell lines, as well as its toxicity towards zebra fish embryos. Chromatographic, NMR and mass spectral analysis of the nanocomposite imply that interactions between doxorubicin and fullerenol are non-covalent bonds. The stability of the nanocomposite was confirmed by the use of atomic force microscopy, dynamic light scattering and transmission electron microscopy. The nanocomposite, compared to the free doxorubicin at equivalent concentrations, significantly decreased the viability of MCF-7 and MDA-MB-231 cells. The flow cytometry results indicated that doxorubicin-loaded fullerenol could remarkably increase the uptake of doxorubicin suggesting that fullerenol might be a promising intracellular targeting carrier for the effici...ent delivery of antitumor drugs into tumor cells. The nanocomposite also affected cell cycle distribution. A genotoxicity test showed that the nanocomposite at all examined concentrations on MCF-7 and at lower concentrations on MDA-MB-231 cells caused DNA damage. Consequently, cell proliferation was notably reduced when compared with controls. Results of the zebrafish embryotoxicity assay showed a decreased overall toxicity, particularly cardiotoxicity and increased safety of the nanocomposite in comparison to doxorubicin alone, as manifested by a higher survival of embryos and less pericardial edema.

Source:
RSC Advances, 2016, 6, 45, 38563-38578
Funding / projects:
  • Functional, Functionalized and Advanced Nanomaterials (RS-45005)
  • Microbial diversity study and characterization of beneficial environmental microorganisms (RS-173048)

DOI: 10.1039/c6ra03879d

ISSN: 2046-2069

WoS: 000374972800010

Scopus: 2-s2.0-84969245787
[ Google Scholar ]
18
20
URI
https://vinar.vin.bg.ac.rs/handle/123456789/1042
Collections
  • WoS Import
Institution/Community
Vinča
TY  - JOUR
AU  - Jović, Danica S.
AU  - Seke, Mariana
AU  - Đorđević, Aleksandar N.
AU  - Mrđanović, Jasminka Ž.
AU  - Aleksić, Lidija D.
AU  - Bogdanović, Gordana M.
AU  - Pavić, Aleksandar B.
AU  - Plavec, Janez
PY  - 2016
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/1042
AB  - Doxorubicin is a very potent chemotherapeutic drug, however its side effects limit its clinical use. The aim of this research was to investigate the properties of a fullerenol/doxorubicin nanocomposite, its potentially cytotoxic and genotoxic effects on malignant cell lines, as well as its toxicity towards zebra fish embryos. Chromatographic, NMR and mass spectral analysis of the nanocomposite imply that interactions between doxorubicin and fullerenol are non-covalent bonds. The stability of the nanocomposite was confirmed by the use of atomic force microscopy, dynamic light scattering and transmission electron microscopy. The nanocomposite, compared to the free doxorubicin at equivalent concentrations, significantly decreased the viability of MCF-7 and MDA-MB-231 cells. The flow cytometry results indicated that doxorubicin-loaded fullerenol could remarkably increase the uptake of doxorubicin suggesting that fullerenol might be a promising intracellular targeting carrier for the efficient delivery of antitumor drugs into tumor cells. The nanocomposite also affected cell cycle distribution. A genotoxicity test showed that the nanocomposite at all examined concentrations on MCF-7 and at lower concentrations on MDA-MB-231 cells caused DNA damage. Consequently, cell proliferation was notably reduced when compared with controls. Results of the zebrafish embryotoxicity assay showed a decreased overall toxicity, particularly cardiotoxicity and increased safety of the nanocomposite in comparison to doxorubicin alone, as manifested by a higher survival of embryos and less pericardial edema.
T2  - RSC Advances
T1  - Fullerenol nanoparticles as a new delivery system for doxorubicin
VL  - 6
IS  - 45
SP  - 38563
EP  - 38578
DO  - 10.1039/c6ra03879d
ER  - 
@article{
author = "Jović, Danica S. and Seke, Mariana and Đorđević, Aleksandar N. and Mrđanović, Jasminka Ž. and Aleksić, Lidija D. and Bogdanović, Gordana M. and Pavić, Aleksandar B. and Plavec, Janez",
year = "2016",
abstract = "Doxorubicin is a very potent chemotherapeutic drug, however its side effects limit its clinical use. The aim of this research was to investigate the properties of a fullerenol/doxorubicin nanocomposite, its potentially cytotoxic and genotoxic effects on malignant cell lines, as well as its toxicity towards zebra fish embryos. Chromatographic, NMR and mass spectral analysis of the nanocomposite imply that interactions between doxorubicin and fullerenol are non-covalent bonds. The stability of the nanocomposite was confirmed by the use of atomic force microscopy, dynamic light scattering and transmission electron microscopy. The nanocomposite, compared to the free doxorubicin at equivalent concentrations, significantly decreased the viability of MCF-7 and MDA-MB-231 cells. The flow cytometry results indicated that doxorubicin-loaded fullerenol could remarkably increase the uptake of doxorubicin suggesting that fullerenol might be a promising intracellular targeting carrier for the efficient delivery of antitumor drugs into tumor cells. The nanocomposite also affected cell cycle distribution. A genotoxicity test showed that the nanocomposite at all examined concentrations on MCF-7 and at lower concentrations on MDA-MB-231 cells caused DNA damage. Consequently, cell proliferation was notably reduced when compared with controls. Results of the zebrafish embryotoxicity assay showed a decreased overall toxicity, particularly cardiotoxicity and increased safety of the nanocomposite in comparison to doxorubicin alone, as manifested by a higher survival of embryos and less pericardial edema.",
journal = "RSC Advances",
title = "Fullerenol nanoparticles as a new delivery system for doxorubicin",
volume = "6",
number = "45",
pages = "38563-38578",
doi = "10.1039/c6ra03879d"
}
Jović, D. S., Seke, M., Đorđević, A. N., Mrđanović, J. Ž., Aleksić, L. D., Bogdanović, G. M., Pavić, A. B.,& Plavec, J.. (2016). Fullerenol nanoparticles as a new delivery system for doxorubicin. in RSC Advances, 6(45), 38563-38578.
https://doi.org/10.1039/c6ra03879d
Jović DS, Seke M, Đorđević AN, Mrđanović JŽ, Aleksić LD, Bogdanović GM, Pavić AB, Plavec J. Fullerenol nanoparticles as a new delivery system for doxorubicin. in RSC Advances. 2016;6(45):38563-38578.
doi:10.1039/c6ra03879d .
Jović, Danica S., Seke, Mariana, Đorđević, Aleksandar N., Mrđanović, Jasminka Ž., Aleksić, Lidija D., Bogdanović, Gordana M., Pavić, Aleksandar B., Plavec, Janez, "Fullerenol nanoparticles as a new delivery system for doxorubicin" in RSC Advances, 6, no. 45 (2016):38563-38578,
https://doi.org/10.1039/c6ra03879d . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB