ВинаР - Репозиторијум Института за нуклеарне науке Винча
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
  •   ВинаР
  • Vinča
  • Radovi istraživača
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting the Heat of Hydride Formation by Graph Neural Network - Exploring the Structure-Property Relation for Metal Hydrides

Само за регистроване кориснике
2022
Аутори
Batalović, Katarina
Radaković, Jana
Paskaš Mamula, Bojana
Kuzmanović, Bojana
Medić-Ilić, Mirjana
Чланак у часопису (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
Theoretical tools or structure-property relations that enable the prediction of metal hydrides are of enormous interest in developing new hydrogen storage materials. Density functional theory (DFT) is one such approach that provides accurate hydride formation energies, which, if complemented with vibrational zero-point energy and other contributions, provides accurate hydride formation enthalpies. However, this approach is time consuming and, therefore, often avoided, hindering the modeling of experimental behavior. The recent implementation of graph neural networks (GNN) in materials science enables fast prediction of crystal formation energy with a DFT accuracy. Starting from the MatErials Graph Network (MEGNet), transfer learning is applied to develop a model for predicting hydride formation enthalpy based on the crystal structure of the starting intermetallic. Excellent accuracy is achieved for Mg-containing alloys, allowing the screening of the Mg-Ni-M ternary intermetallics. In a...ddition, data containing matching experimental properties and crystal structure of metal hydrides are provided, enabling future development.

Кључне речи:
DFT / discovery / hydrogen storage / intermetallic compounds / learning based prediction / machine learning / metal hydride / mg / Mg2Ni / Mg3MnNi2 / progress / ti
Извор:
Advanced Theory and Simulations, 2022, 5, 9, 2200293-
Финансирање / пројекти:
  • Ministry of Education, Science, and Technological Development of the Republic of Serbia
Напомена:
  • Preprint version available at: https://dx.doi.org/10.2139/ssrn.4055259
  • Data can be found at: https://vinar.vin.bg.ac.rs/handle/123456789/11282
Повезане информације:
  • Повезани садржај
    https://vinar.vin.bg.ac.rs/handle/123456789/11282

DOI: 10.1002/adts.202200293

ISSN: 2513-0390

WoS: 000819550400001

Scopus: 2-s2.0-85133161452
[ Google Scholar ]
11
12
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10348
Колекције
  • 011 - Laboratorija za nuklearnu i plazma fiziku
  • Radovi istraživača
Институција/група
Vinča
TY  - JOUR
AU  - Batalović, Katarina
AU  - Radaković, Jana
AU  - Paskaš Mamula, Bojana
AU  - Kuzmanović, Bojana
AU  - Medić-Ilić, Mirjana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10348
AB  - Theoretical tools or structure-property relations that enable the prediction of metal hydrides are of enormous interest in developing new hydrogen storage materials. Density functional theory (DFT) is one such approach that provides accurate hydride formation energies, which, if complemented with vibrational zero-point energy and other contributions, provides accurate hydride formation enthalpies. However, this approach is time consuming and, therefore, often avoided, hindering the modeling of experimental behavior. The recent implementation of graph neural networks (GNN) in materials science enables fast prediction of crystal formation energy with a DFT accuracy. Starting from the MatErials Graph Network (MEGNet), transfer learning is applied to develop a model for predicting hydride formation enthalpy based on the crystal structure of the starting intermetallic. Excellent accuracy is achieved for Mg-containing alloys, allowing the screening of the Mg-Ni-M ternary intermetallics. In addition, data containing matching experimental properties and crystal structure of metal hydrides are provided, enabling future development.
T2  - Advanced Theory and Simulations
T1  - Predicting the Heat of Hydride Formation by Graph Neural Network - Exploring the Structure-Property Relation for Metal Hydrides
VL  - 5
IS  - 9
SP  - 2200293
DO  - 10.1002/adts.202200293
ER  - 
@article{
author = "Batalović, Katarina and Radaković, Jana and Paskaš Mamula, Bojana and Kuzmanović, Bojana and Medić-Ilić, Mirjana",
year = "2022",
abstract = "Theoretical tools or structure-property relations that enable the prediction of metal hydrides are of enormous interest in developing new hydrogen storage materials. Density functional theory (DFT) is one such approach that provides accurate hydride formation energies, which, if complemented with vibrational zero-point energy and other contributions, provides accurate hydride formation enthalpies. However, this approach is time consuming and, therefore, often avoided, hindering the modeling of experimental behavior. The recent implementation of graph neural networks (GNN) in materials science enables fast prediction of crystal formation energy with a DFT accuracy. Starting from the MatErials Graph Network (MEGNet), transfer learning is applied to develop a model for predicting hydride formation enthalpy based on the crystal structure of the starting intermetallic. Excellent accuracy is achieved for Mg-containing alloys, allowing the screening of the Mg-Ni-M ternary intermetallics. In addition, data containing matching experimental properties and crystal structure of metal hydrides are provided, enabling future development.",
journal = "Advanced Theory and Simulations",
title = "Predicting the Heat of Hydride Formation by Graph Neural Network - Exploring the Structure-Property Relation for Metal Hydrides",
volume = "5",
number = "9",
pages = "2200293",
doi = "10.1002/adts.202200293"
}
Batalović, K., Radaković, J., Paskaš Mamula, B., Kuzmanović, B.,& Medić-Ilić, M.. (2022). Predicting the Heat of Hydride Formation by Graph Neural Network - Exploring the Structure-Property Relation for Metal Hydrides. in Advanced Theory and Simulations, 5(9), 2200293.
https://doi.org/10.1002/adts.202200293
Batalović K, Radaković J, Paskaš Mamula B, Kuzmanović B, Medić-Ilić M. Predicting the Heat of Hydride Formation by Graph Neural Network - Exploring the Structure-Property Relation for Metal Hydrides. in Advanced Theory and Simulations. 2022;5(9):2200293.
doi:10.1002/adts.202200293 .
Batalović, Katarina, Radaković, Jana, Paskaš Mamula, Bojana, Kuzmanović, Bojana, Medić-Ilić, Mirjana, "Predicting the Heat of Hydride Formation by Graph Neural Network - Exploring the Structure-Property Relation for Metal Hydrides" in Advanced Theory and Simulations, 5, no. 9 (2022):2200293,
https://doi.org/10.1002/adts.202200293 . .

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О репозиторијуму ВинаР | Пошаљите запажања

re3dataOpenAIRERCUB