VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals

Thumbnail
2022
Main article [PDF] (3.168Mb)
Authors
Marušić, Leonardo
Kalinić, Ana
Radović, Ivan
Jakovac, Josip
Mišković, Zoran L.
Despoja, Vito
Article (Published version)
Metadata
Show full item record
Abstract
Graphene doped by alkali atoms (ACx) supports two heavily populated bands (π and σ) crossing the Fermi level, which enables the formation of two intense two-dimensional plasmons: the Dirac plasmon (DP) and the acoustic plasmon (AP). Although the mechanism of the formation of these plasmons in electrostatically biased graphene or at noble metal surfaces is well known, the mechanism of their formation in alkali-doped graphenes is still not completely understood. We shall demonstrate that two isoelectronic systems, KC8 and CsC8, support substantially different plasmonic spectra: the KC8 supports a sharp DP and a well-defined AP, while the CsC8 supports a broad DP and does not support an AP at all. We shall demonstrate that the AP in an ACx is not, as previously believed, just a consequence of the interplay of the π and σ intraband transitions, but a very subtle interplay between these transitions and the background screening, caused by the out-of-plane interband C(π)→A(σ) transitions.
Keywords:
acoustic plasmon / EELS / graphene / graphene intercalation compounds / plasmon
Source:
International Journal of Molecular Sciences, 2022, 23, 9, 4770-
Funding / projects:
  • Croatian Science Foundation [Grant No. IP-2020-02-5556]
  • European Regional Development Fund for the ‘QuantiXLie Centre of Excellence’ [Grant No. KK.01.1.1.01.0004]
  • Serbia–Croatia bilateral project [Grant No. 337-00-205/2019-09/28]
  • Ministry of Education, Science and Technological Development of the Republic of Serbia
  • Natural Sciences and Engineering Research Council of Canada [Grant No. 2016-03689]

DOI: 10.3390/ijms23094770

ISSN: 1422-0067

WoS: 00079532460000

Scopus: 2-s2.0-85128753465
[ Google Scholar ]
4
1
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10245
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Marušić, Leonardo
AU  - Kalinić, Ana
AU  - Radović, Ivan
AU  - Jakovac, Josip
AU  - Mišković, Zoran L.
AU  - Despoja, Vito
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10245
AB  - Graphene doped by alkali atoms (ACx) supports two heavily populated bands (π and σ) crossing the Fermi level, which enables the formation of two intense two-dimensional plasmons: the Dirac plasmon (DP) and the acoustic plasmon (AP). Although the mechanism of the formation of these plasmons in electrostatically biased graphene or at noble metal surfaces is well known, the mechanism of their formation in alkali-doped graphenes is still not completely understood. We shall demonstrate that two isoelectronic systems, KC8 and CsC8, support substantially different plasmonic spectra: the KC8 supports a sharp DP and a well-defined AP, while the CsC8 supports a broad DP and does not support an AP at all. We shall demonstrate that the AP in an ACx is not, as previously believed, just a consequence of the interplay of the π and σ intraband transitions, but a very subtle interplay between these transitions and the background screening, caused by the out-of-plane interband C(π)→A(σ) transitions.
T2  - International Journal of Molecular Sciences
T1  - Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals
VL  - 23
IS  - 9
SP  - 4770
DO  - 10.3390/ijms23094770
ER  - 
@article{
author = "Marušić, Leonardo and Kalinić, Ana and Radović, Ivan and Jakovac, Josip and Mišković, Zoran L. and Despoja, Vito",
year = "2022",
abstract = "Graphene doped by alkali atoms (ACx) supports two heavily populated bands (π and σ) crossing the Fermi level, which enables the formation of two intense two-dimensional plasmons: the Dirac plasmon (DP) and the acoustic plasmon (AP). Although the mechanism of the formation of these plasmons in electrostatically biased graphene or at noble metal surfaces is well known, the mechanism of their formation in alkali-doped graphenes is still not completely understood. We shall demonstrate that two isoelectronic systems, KC8 and CsC8, support substantially different plasmonic spectra: the KC8 supports a sharp DP and a well-defined AP, while the CsC8 supports a broad DP and does not support an AP at all. We shall demonstrate that the AP in an ACx is not, as previously believed, just a consequence of the interplay of the π and σ intraband transitions, but a very subtle interplay between these transitions and the background screening, caused by the out-of-plane interband C(π)→A(σ) transitions.",
journal = "International Journal of Molecular Sciences",
title = "Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals",
volume = "23",
number = "9",
pages = "4770",
doi = "10.3390/ijms23094770"
}
Marušić, L., Kalinić, A., Radović, I., Jakovac, J., Mišković, Z. L.,& Despoja, V.. (2022). Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals. in International Journal of Molecular Sciences, 23(9), 4770.
https://doi.org/10.3390/ijms23094770
Marušić L, Kalinić A, Radović I, Jakovac J, Mišković ZL, Despoja V. Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals. in International Journal of Molecular Sciences. 2022;23(9):4770.
doi:10.3390/ijms23094770 .
Marušić, Leonardo, Kalinić, Ana, Radović, Ivan, Jakovac, Josip, Mišković, Zoran L., Despoja, Vito, "Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals" in International Journal of Molecular Sciences, 23, no. 9 (2022):4770,
https://doi.org/10.3390/ijms23094770 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB