VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass

Authorized Users Only
2022
Authors
Katnić, Đurica
Marinović-Cincović, Milena
Porobić, Slavica J.
Vujčić, Ivica
Šaponjić, Aleksandra
Sikirić, Biljana
Živojinović, Dragana
Article (Published version)
Metadata
Show full item record
Abstract
Redirecting waste biomass back into the economy can reduce their burden on the environment. The use of waste biomass for the production of fuels, value-added materials or natural fillers has significant economic and environmental benefits. Physico-chemical characterization of waste biomass (plum pomace and fig pomace) was done by proximate, elemental, biochemical analysis, FTIR and SEM analysis. The calorific value of both biomasses can be compared with the calorific value of lignite, which rises their potential use as a solid biofuel. The combustion behavior of biomass was investigated by thermal analysis techniques. Based on thermal degradation experiments performed at four heating rates a kinetic analysis of the biomass decomposition process was accomplished. The kinetic study was done using Kissinger method, Ozawa method, Flynn-Wall-Ozawa (FWO) method, Starink method, and Kissinger-Akahira-Sunose (KAS) method. The value of activation energy obtained by different kinetic methods was... ∼210 kJ/mol for plum pomace and ∼162 kJ/mol for fig pomace. Estimated activation energy values were used to calculate thermodynamic parameters. In addition to the fact that the obtained results can serve as a useful reference for the design of pyrolysis reactors, this research has ecological significance because it solves the problem of solid waste disposal.

Keywords:
Kinetics analysis / Plum and fig pomace / Pyrolysis / Thermal analysis TG/DTG / Thermodynamic parameters
Source:
Journal of Cleaner Production, 2022, 352, 131637-
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
  • Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden (RS-43009)

DOI: 10.1016/j.jclepro.2022.131637

ISSN: 0959-6526

WoS: 00079122530000

Scopus: 2-s2.0-85127616534
[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10230
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Katnić, Đurica
AU  - Marinović-Cincović, Milena
AU  - Porobić, Slavica J.
AU  - Vujčić, Ivica
AU  - Šaponjić, Aleksandra
AU  - Sikirić, Biljana
AU  - Živojinović, Dragana
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10230
AB  - Redirecting waste biomass back into the economy can reduce their burden on the environment. The use of waste biomass for the production of fuels, value-added materials or natural fillers has significant economic and environmental benefits. Physico-chemical characterization of waste biomass (plum pomace and fig pomace) was done by proximate, elemental, biochemical analysis, FTIR and SEM analysis. The calorific value of both biomasses can be compared with the calorific value of lignite, which rises their potential use as a solid biofuel. The combustion behavior of biomass was investigated by thermal analysis techniques. Based on thermal degradation experiments performed at four heating rates a kinetic analysis of the biomass decomposition process was accomplished. The kinetic study was done using Kissinger method, Ozawa method, Flynn-Wall-Ozawa (FWO) method, Starink method, and Kissinger-Akahira-Sunose (KAS) method. The value of activation energy obtained by different kinetic methods was ∼210 kJ/mol for plum pomace and ∼162 kJ/mol for fig pomace. Estimated activation energy values were used to calculate thermodynamic parameters. In addition to the fact that the obtained results can serve as a useful reference for the design of pyrolysis reactors, this research has ecological significance because it solves the problem of solid waste disposal.
T2  - Journal of Cleaner Production
T1  - Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass
VL  - 352
SP  - 131637
DO  - 10.1016/j.jclepro.2022.131637
ER  - 
@article{
author = "Katnić, Đurica and Marinović-Cincović, Milena and Porobić, Slavica J. and Vujčić, Ivica and Šaponjić, Aleksandra and Sikirić, Biljana and Živojinović, Dragana",
year = "2022",
abstract = "Redirecting waste biomass back into the economy can reduce their burden on the environment. The use of waste biomass for the production of fuels, value-added materials or natural fillers has significant economic and environmental benefits. Physico-chemical characterization of waste biomass (plum pomace and fig pomace) was done by proximate, elemental, biochemical analysis, FTIR and SEM analysis. The calorific value of both biomasses can be compared with the calorific value of lignite, which rises their potential use as a solid biofuel. The combustion behavior of biomass was investigated by thermal analysis techniques. Based on thermal degradation experiments performed at four heating rates a kinetic analysis of the biomass decomposition process was accomplished. The kinetic study was done using Kissinger method, Ozawa method, Flynn-Wall-Ozawa (FWO) method, Starink method, and Kissinger-Akahira-Sunose (KAS) method. The value of activation energy obtained by different kinetic methods was ∼210 kJ/mol for plum pomace and ∼162 kJ/mol for fig pomace. Estimated activation energy values were used to calculate thermodynamic parameters. In addition to the fact that the obtained results can serve as a useful reference for the design of pyrolysis reactors, this research has ecological significance because it solves the problem of solid waste disposal.",
journal = "Journal of Cleaner Production",
title = "Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass",
volume = "352",
pages = "131637",
doi = "10.1016/j.jclepro.2022.131637"
}
Katnić, Đ., Marinović-Cincović, M., Porobić, S. J., Vujčić, I., Šaponjić, A., Sikirić, B.,& Živojinović, D.. (2022). Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass. in Journal of Cleaner Production, 352, 131637.
https://doi.org/10.1016/j.jclepro.2022.131637
Katnić Đ, Marinović-Cincović M, Porobić SJ, Vujčić I, Šaponjić A, Sikirić B, Živojinović D. Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass. in Journal of Cleaner Production. 2022;352:131637.
doi:10.1016/j.jclepro.2022.131637 .
Katnić, Đurica, Marinović-Cincović, Milena, Porobić, Slavica J., Vujčić, Ivica, Šaponjić, Aleksandra, Sikirić, Biljana, Živojinović, Dragana, "Characterization and kinetics of thermal decomposition behavior of plum and fig pomace biomass" in Journal of Cleaner Production, 352 (2022):131637,
https://doi.org/10.1016/j.jclepro.2022.131637 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB