VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10

Authorized Users Only
2022
Authors
Samaržija-Jovanović, Suzana
Jovanović, Vojislav
Jovanović, Tijana
Petković, Branka
Marković, Gordana
Porobić, Slavica
Marinović-Cincović, Milena
Article (Published version)
Metadata
Show full item record
Abstract
In this study, the thermal and hydrolytic properties of composite systems based on the urea–formaldehyde resin (UF) and eco-friendly montmorillonite (K10) as formaldehyde (FA) scavenger were examined. UF resin with molar ratio FA:U = 0.8 was synthesized in situ with inactivated, and activated K10. K10 was activated by sulfuric acid (H2SO4) with and without magnetic stirring. The samples are marked with $${\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$,$${\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$, and $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, respectively. X-ray diffraction analysis and non-isothermal thermogravimetric analysis, supported by data from Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the samples. Based on the measurement of speci...fic surface area (SSA), the degree of activation was determined. Measurement of the SSA shows that higher values were obtained for modified K10 compared to inactive K10. The amount of free and liberated FA was 0.06% and 4.6% for $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$and 0.12% and 4% for $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$. This research showed that the $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$composite has a lesser amount of free FA (0.06%) in comparison to the $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite (0.12%). The $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite has a higher resistance to acidic hydrolysis. The modified $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$composite is more thermally stable than $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite.

Source:
Journal of Thermal Analysis and Calorimetry, 2022
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200123 (University of Priština - Kosovska Mitrovica, Faculty of Natural Sciences and Mathematics) (RS-200123)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)

DOI: 10.1007/s10973-022-11238-2

ISSN: 1588-2926

WoS: 000754148700003

Scopus: 2-s2.0-85124599808
[ Google Scholar ]
1
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10164
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Samaržija-Jovanović, Suzana
AU  - Jovanović, Vojislav
AU  - Jovanović, Tijana
AU  - Petković, Branka
AU  - Marković, Gordana
AU  - Porobić, Slavica
AU  - Marinović-Cincović, Milena
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10164
AB  - In this study, the thermal and hydrolytic properties of composite systems based on the urea–formaldehyde resin (UF) and eco-friendly montmorillonite (K10) as formaldehyde (FA) scavenger were examined. UF resin with molar ratio FA:U = 0.8 was synthesized in situ with inactivated, and activated K10. K10 was activated by sulfuric acid (H2SO4) with and without magnetic stirring. The samples are marked with $${\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$,$${\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$, and $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, respectively. X-ray diffraction analysis and non-isothermal thermogravimetric analysis, supported by data from Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the samples. Based on the measurement of specific surface area (SSA), the degree of activation was determined. Measurement of the SSA shows that higher values were obtained for modified K10 compared to inactive K10. The amount of free and liberated FA was 0.06% and 4.6% for $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$and 0.12% and 4% for $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$. This research showed that the $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$composite has a lesser amount of free FA (0.06%) in comparison to the $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite (0.12%). The $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite has a higher resistance to acidic hydrolysis. The modified $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$composite is more thermally stable than $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite.
T2  - Journal of Thermal Analysis and Calorimetry
T1  - Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10
DO  - 10.1007/s10973-022-11238-2
ER  - 
@article{
author = "Samaržija-Jovanović, Suzana and Jovanović, Vojislav and Jovanović, Tijana and Petković, Branka and Marković, Gordana and Porobić, Slavica and Marinović-Cincović, Milena",
year = "2022",
abstract = "In this study, the thermal and hydrolytic properties of composite systems based on the urea–formaldehyde resin (UF) and eco-friendly montmorillonite (K10) as formaldehyde (FA) scavenger were examined. UF resin with molar ratio FA:U = 0.8 was synthesized in situ with inactivated, and activated K10. K10 was activated by sulfuric acid (H2SO4) with and without magnetic stirring. The samples are marked with $${\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$,$${\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$, and $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$, respectively. X-ray diffraction analysis and non-isothermal thermogravimetric analysis, supported by data from Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the samples. Based on the measurement of specific surface area (SSA), the degree of activation was determined. Measurement of the SSA shows that higher values were obtained for modified K10 compared to inactive K10. The amount of free and liberated FA was 0.06% and 4.6% for $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$and 0.12% and 4% for $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$. This research showed that the $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}$$composite has a lesser amount of free FA (0.06%) in comparison to the $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite (0.12%). The $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite has a higher resistance to acidic hydrolysis. The modified $${\mathrm{UF}/\mathrm{K}10}_{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)}$$composite is more thermally stable than $${\mathrm{UF}/\mathrm{K}10}_{{\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4 }\right)}_{\mathrm{ST}}}$$composite.",
journal = "Journal of Thermal Analysis and Calorimetry",
title = "Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10",
doi = "10.1007/s10973-022-11238-2"
}
Samaržija-Jovanović, S., Jovanović, V., Jovanović, T., Petković, B., Marković, G., Porobić, S.,& Marinović-Cincović, M.. (2022). Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10. in Journal of Thermal Analysis and Calorimetry.
https://doi.org/10.1007/s10973-022-11238-2
Samaržija-Jovanović S, Jovanović V, Jovanović T, Petković B, Marković G, Porobić S, Marinović-Cincović M. Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10. in Journal of Thermal Analysis and Calorimetry. 2022;.
doi:10.1007/s10973-022-11238-2 .
Samaržija-Jovanović, Suzana, Jovanović, Vojislav, Jovanović, Tijana, Petković, Branka, Marković, Gordana, Porobić, Slavica, Marinović-Cincović, Milena, "Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10" in Journal of Thermal Analysis and Calorimetry (2022),
https://doi.org/10.1007/s10973-022-11238-2 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB