VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties

Thumbnail
2021
Main article [PDF] (1.649Mb)
Authors
Motorzhina, Anna
Jovanović, Sonja
Belyaev, Victor K.
Murzin, Dmitry
Pshenichnikov, Stanislav
Kolesnikova, Valeria G.
Omelyanchik, Alexander S.
Gazvoda, Lea
Spreitzer, Matjaž
Panina, Larissa
Rodionova, Valeria
Vukomanović, Marija
Levada, Kateryna
Article (Published version)
Metadata
Show full item record
Abstract
The combination of plasmonic material and magnetic metal oxide nanoparticles is widely used in multifunctional nanosystems. Here we propose a method for the fabrication of a gold/cobalt ferrite nanocomposite for biomedical applications. The composite includes gold cores of ~10 nm in diameter coated with arginine, which are surrounded by small cobalt ferrite nanoparticles with diameters of ~5 nm covered with dihydrocaffeic acid. The structure and elemental composition, morphology and dimensions, magnetic and optical properties, and biocompatibility of new nanocomposite were studied. The magnetic properties of the composite are mostly determined by the superparamagnetic state of cobalt ferrite nanoparticles, and optical properties are influenced by the localized plasmon resonance in gold nanoparticles. The cytotoxicity of gold/cobalt ferrite nanocomposite was tested using T-lymphoblastic leukemia and peripheral blood mononuclear cells. Studied composite has selective citotoxic effect on ...cancerous cells while it has no cytotoxic effect on healtly cells. The results suggest that this material can be explored in the future for combined photothermal treatment and magnetic theranostic.

Keywords:
localized plasmonic resonance / magneto-plasmonic nanoparticles / photothermal therapy
Source:
Processes, 2021, 9, 12, 2264-
Funding / projects:
  • Sophia Kovalevskaya North-West Mathematical Research Center [075-02-2021-1748]
  • Russian Science Foundation [21-72-20158]
  • Slovenian Research Agency [J2-8169, N2-0150, P2-0091]

DOI: 10.3390/pr9122264

ISSN: 2227-9717

WoS: 000737511500001

Scopus: 2-s2.0-85121691701
[ Google Scholar ]
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10099
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Motorzhina, Anna
AU  - Jovanović, Sonja
AU  - Belyaev, Victor K.
AU  - Murzin, Dmitry
AU  - Pshenichnikov, Stanislav
AU  - Kolesnikova, Valeria G.
AU  - Omelyanchik, Alexander S.
AU  - Gazvoda, Lea
AU  - Spreitzer, Matjaž
AU  - Panina, Larissa
AU  - Rodionova, Valeria
AU  - Vukomanović, Marija
AU  - Levada, Kateryna
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10099
AB  - The combination of plasmonic material and magnetic metal oxide nanoparticles is widely used in multifunctional nanosystems. Here we propose a method for the fabrication of a gold/cobalt ferrite nanocomposite for biomedical applications. The composite includes gold cores of ~10 nm in diameter coated with arginine, which are surrounded by small cobalt ferrite nanoparticles with diameters of ~5 nm covered with dihydrocaffeic acid. The structure and elemental composition, morphology and dimensions, magnetic and optical properties, and biocompatibility of new nanocomposite were studied. The magnetic properties of the composite are mostly determined by the superparamagnetic state of cobalt ferrite nanoparticles, and optical properties are influenced by the localized plasmon resonance in gold nanoparticles. The cytotoxicity of gold/cobalt ferrite nanocomposite was tested using T-lymphoblastic leukemia and peripheral blood mononuclear cells. Studied composite has selective citotoxic effect on cancerous cells while it has no cytotoxic effect on healtly cells. The results suggest that this material can be explored in the future for combined photothermal treatment and magnetic theranostic.
T2  - Processes
T1  - Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties
VL  - 9
IS  - 12
SP  - 2264
DO  - 10.3390/pr9122264
ER  - 
@article{
author = "Motorzhina, Anna and Jovanović, Sonja and Belyaev, Victor K. and Murzin, Dmitry and Pshenichnikov, Stanislav and Kolesnikova, Valeria G. and Omelyanchik, Alexander S. and Gazvoda, Lea and Spreitzer, Matjaž and Panina, Larissa and Rodionova, Valeria and Vukomanović, Marija and Levada, Kateryna",
year = "2021",
abstract = "The combination of plasmonic material and magnetic metal oxide nanoparticles is widely used in multifunctional nanosystems. Here we propose a method for the fabrication of a gold/cobalt ferrite nanocomposite for biomedical applications. The composite includes gold cores of ~10 nm in diameter coated with arginine, which are surrounded by small cobalt ferrite nanoparticles with diameters of ~5 nm covered with dihydrocaffeic acid. The structure and elemental composition, morphology and dimensions, magnetic and optical properties, and biocompatibility of new nanocomposite were studied. The magnetic properties of the composite are mostly determined by the superparamagnetic state of cobalt ferrite nanoparticles, and optical properties are influenced by the localized plasmon resonance in gold nanoparticles. The cytotoxicity of gold/cobalt ferrite nanocomposite was tested using T-lymphoblastic leukemia and peripheral blood mononuclear cells. Studied composite has selective citotoxic effect on cancerous cells while it has no cytotoxic effect on healtly cells. The results suggest that this material can be explored in the future for combined photothermal treatment and magnetic theranostic.",
journal = "Processes",
title = "Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties",
volume = "9",
number = "12",
pages = "2264",
doi = "10.3390/pr9122264"
}
Motorzhina, A., Jovanović, S., Belyaev, V. K., Murzin, D., Pshenichnikov, S., Kolesnikova, V. G., Omelyanchik, A. S., Gazvoda, L., Spreitzer, M., Panina, L., Rodionova, V., Vukomanović, M.,& Levada, K.. (2021). Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties. in Processes, 9(12), 2264.
https://doi.org/10.3390/pr9122264
Motorzhina A, Jovanović S, Belyaev VK, Murzin D, Pshenichnikov S, Kolesnikova VG, Omelyanchik AS, Gazvoda L, Spreitzer M, Panina L, Rodionova V, Vukomanović M, Levada K. Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties. in Processes. 2021;9(12):2264.
doi:10.3390/pr9122264 .
Motorzhina, Anna, Jovanović, Sonja, Belyaev, Victor K., Murzin, Dmitry, Pshenichnikov, Stanislav, Kolesnikova, Valeria G., Omelyanchik, Alexander S., Gazvoda, Lea, Spreitzer, Matjaž, Panina, Larissa, Rodionova, Valeria, Vukomanović, Marija, Levada, Kateryna, "Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties" in Processes, 9, no. 12 (2021):2264,
https://doi.org/10.3390/pr9122264 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB