VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recharging process of commercial floating-gate MOS transistor in dosimetry application

Thumbnail
2021
Main article [PDF] (989.2Kb)
Authors
Ilić, Stefan
Anđelković, Marko S.
Duane, Russell
Palma, Alberto J.
Sarajlić, Milija
Stanković, Srboljub J.
Ristić, Goran S.
Article (Published version)
Metadata
Show full item record
Abstract
We investigated the recharging process of commercial floating gate device (EPAD) during the six different dose rates and ten irradiation cycles with the highest dose rate. Dose rate dependence of the floating gate dosimeter was observed from 1 Gy/h to 26 Gy/h (H2O). There is no change of the dosimetric characteristic with a constant dose rate of 26 Gy/h for ten cycles. The absorbed dose does not affect the drift of the threshold voltage readings after the irradiation steps. The reprogramming characteristic is not degrading with the absorbed dose for the ten irradiation cycles, giving the promising potential in the application for dosimetric purposes.
Keywords:
Floating gate / Radiation sensor / EPAD / Recharging / Programming cell / Non-volatile memory
Source:
Microelectronics Reliability, 2021, 126, 114322-
Funding / projects:
  • WIDESPREAD-2018-3-TWINNING
  • Joint research of measurements and effects of ionizing and UV radiation in medicine and environmental protection (RS-43011)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • ELICSIR - Enhancement of Sceintific Excellence and Innovation Potential in Electronic Instrumentation for Ionising Radiation Environments (EU-857558)

DOI: 10.1016/j.microrel.2021.114322

ISSN: 0026-2714

WoS: 000733412800004

Scopus: 2-s2.0-85120850474
[ Google Scholar ]
1
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10081
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Ilić, Stefan
AU  - Anđelković, Marko S.
AU  - Duane, Russell
AU  - Palma, Alberto J.
AU  - Sarajlić, Milija
AU  - Stanković, Srboljub J.
AU  - Ristić, Goran S.
PY  - 2021
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10081
AB  - We investigated the recharging process of commercial floating gate device (EPAD) during the six different dose rates and ten irradiation cycles with the highest dose rate. Dose rate dependence of the floating gate dosimeter was observed from 1 Gy/h to 26 Gy/h (H2O). There is no change of the dosimetric characteristic with a constant dose rate of 26 Gy/h for ten cycles. The absorbed dose does not affect the drift of the threshold voltage readings after the irradiation steps. The reprogramming characteristic is not degrading with the absorbed dose for the ten irradiation cycles, giving the promising potential in the application for dosimetric purposes.
T2  - Microelectronics Reliability
T1  - Recharging process of commercial floating-gate MOS transistor in dosimetry application
VL  - 126
SP  - 114322
DO  - 10.1016/j.microrel.2021.114322
ER  - 
@article{
author = "Ilić, Stefan and Anđelković, Marko S. and Duane, Russell and Palma, Alberto J. and Sarajlić, Milija and Stanković, Srboljub J. and Ristić, Goran S.",
year = "2021",
abstract = "We investigated the recharging process of commercial floating gate device (EPAD) during the six different dose rates and ten irradiation cycles with the highest dose rate. Dose rate dependence of the floating gate dosimeter was observed from 1 Gy/h to 26 Gy/h (H2O). There is no change of the dosimetric characteristic with a constant dose rate of 26 Gy/h for ten cycles. The absorbed dose does not affect the drift of the threshold voltage readings after the irradiation steps. The reprogramming characteristic is not degrading with the absorbed dose for the ten irradiation cycles, giving the promising potential in the application for dosimetric purposes.",
journal = "Microelectronics Reliability",
title = "Recharging process of commercial floating-gate MOS transistor in dosimetry application",
volume = "126",
pages = "114322",
doi = "10.1016/j.microrel.2021.114322"
}
Ilić, S., Anđelković, M. S., Duane, R., Palma, A. J., Sarajlić, M., Stanković, S. J.,& Ristić, G. S.. (2021). Recharging process of commercial floating-gate MOS transistor in dosimetry application. in Microelectronics Reliability, 126, 114322.
https://doi.org/10.1016/j.microrel.2021.114322
Ilić S, Anđelković MS, Duane R, Palma AJ, Sarajlić M, Stanković SJ, Ristić GS. Recharging process of commercial floating-gate MOS transistor in dosimetry application. in Microelectronics Reliability. 2021;126:114322.
doi:10.1016/j.microrel.2021.114322 .
Ilić, Stefan, Anđelković, Marko S., Duane, Russell, Palma, Alberto J., Sarajlić, Milija, Stanković, Srboljub J., Ristić, Goran S., "Recharging process of commercial floating-gate MOS transistor in dosimetry application" in Microelectronics Reliability, 126 (2021):114322,
https://doi.org/10.1016/j.microrel.2021.114322 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

OpenAIRERCUB