VinaR - Repository of the Vinča Nuclear Institute
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
  •   Vinar
  • Vinča
  • Radovi istraživača
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study

Authorized Users Only
2022
Authors
Pijović, Milena
Manić, Nebojša G.
Vasić Anićijević, Dragana D.
Krstić, Aleksandar
Mitrić, Miodrag
Matić, Tamara
Janković, Bojan Ž.
Article (Published version)
Metadata
Show full item record
Abstract
Pyrolytic tire (PT) chars were first produced from waste car tires (WCT) through carbonization process at 800 °C, for different retention times. Then, best PT-char sample by its physicochemical properties (WCT 800(1 h)) was further tested for its ability to adsorb Rhodamine B (RhB) dye from aqueous solutions. Structural characterization of synthesized material showed existence of graphene-based material, with average pore diameter of 22.8 nm and specific surface area of 55.8 m2·g−1. Obtained carbon material meets specifications of commercial carbon black (CB). The yield of 33.6% of CB recovered has been achieved. Under the optimal conditions, 99.57% of RhB was removed. Adsorption of RhB obeys pseudo second-order model and Langmuir isotherm model. DFT (the density functional theory) was revealed that effective bonding of RhB onto WCT 800 originates from π-electron interactions with aromatic moieties and chemical (or at least the electrostatic) interactions, between positive nitrogen and... electron-rich surface groups.

Keywords:
DFT / Graphene-based adsorbent / Pyrolysis / Recycling / Surface properties / Waste tires
Source:
Diamond and Related Materials, 2022, 121, 108768-
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200105 (University of Belgrade, Faculty of Mechanical Engineering) (RS-200105)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)

DOI: 10.1016/j.diamond.2021.108768

ISSN: 0925-9635

WoS: 000733634900004

Scopus: 2-s2.0-85121014167
[ Google Scholar ]
2
URI
https://vinar.vin.bg.ac.rs/handle/123456789/10077
Collections
  • Radovi istraživača
Institution/Community
Vinča
TY  - JOUR
AU  - Pijović, Milena
AU  - Manić, Nebojša G.
AU  - Vasić Anićijević, Dragana D.
AU  - Krstić, Aleksandar
AU  - Mitrić, Miodrag
AU  - Matić, Tamara
AU  - Janković, Bojan Ž.
PY  - 2022
UR  - https://vinar.vin.bg.ac.rs/handle/123456789/10077
AB  - Pyrolytic tire (PT) chars were first produced from waste car tires (WCT) through carbonization process at 800 °C, for different retention times. Then, best PT-char sample by its physicochemical properties (WCT 800(1 h)) was further tested for its ability to adsorb Rhodamine B (RhB) dye from aqueous solutions. Structural characterization of synthesized material showed existence of graphene-based material, with average pore diameter of 22.8 nm and specific surface area of 55.8 m2·g−1. Obtained carbon material meets specifications of commercial carbon black (CB). The yield of 33.6% of CB recovered has been achieved. Under the optimal conditions, 99.57% of RhB was removed. Adsorption of RhB obeys pseudo second-order model and Langmuir isotherm model. DFT (the density functional theory) was revealed that effective bonding of RhB onto WCT 800 originates from π-electron interactions with aromatic moieties and chemical (or at least the electrostatic) interactions, between positive nitrogen and electron-rich surface groups.
T2  - Diamond and Related Materials
T1  - Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study
VL  - 121
SP  - 108768
DO  - 10.1016/j.diamond.2021.108768
ER  - 
@article{
author = "Pijović, Milena and Manić, Nebojša G. and Vasić Anićijević, Dragana D. and Krstić, Aleksandar and Mitrić, Miodrag and Matić, Tamara and Janković, Bojan Ž.",
year = "2022",
abstract = "Pyrolytic tire (PT) chars were first produced from waste car tires (WCT) through carbonization process at 800 °C, for different retention times. Then, best PT-char sample by its physicochemical properties (WCT 800(1 h)) was further tested for its ability to adsorb Rhodamine B (RhB) dye from aqueous solutions. Structural characterization of synthesized material showed existence of graphene-based material, with average pore diameter of 22.8 nm and specific surface area of 55.8 m2·g−1. Obtained carbon material meets specifications of commercial carbon black (CB). The yield of 33.6% of CB recovered has been achieved. Under the optimal conditions, 99.57% of RhB was removed. Adsorption of RhB obeys pseudo second-order model and Langmuir isotherm model. DFT (the density functional theory) was revealed that effective bonding of RhB onto WCT 800 originates from π-electron interactions with aromatic moieties and chemical (or at least the electrostatic) interactions, between positive nitrogen and electron-rich surface groups.",
journal = "Diamond and Related Materials",
title = "Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study",
volume = "121",
pages = "108768",
doi = "10.1016/j.diamond.2021.108768"
}
Pijović, M., Manić, N. G., Vasić Anićijević, D. D., Krstić, A., Mitrić, M., Matić, T.,& Janković, B. Ž.. (2022). Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study. in Diamond and Related Materials, 121, 108768.
https://doi.org/10.1016/j.diamond.2021.108768
Pijović M, Manić NG, Vasić Anićijević DD, Krstić A, Mitrić M, Matić T, Janković BŽ. Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study. in Diamond and Related Materials. 2022;121:108768.
doi:10.1016/j.diamond.2021.108768 .
Pijović, Milena, Manić, Nebojša G., Vasić Anićijević, Dragana D., Krstić, Aleksandar, Mitrić, Miodrag, Matić, Tamara, Janković, Bojan Ž., "Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study" in Diamond and Related Materials, 121 (2022):108768,
https://doi.org/10.1016/j.diamond.2021.108768 . .

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the VinaR Repository | Send Feedback

re3dataOpenAIRERCUB