Alignment-free method for functional annotation of amino acid substitutions: application on epigenetic factors involved in hematologic malignancies

Gemović B, Perović V, Davidović R, Drljača T, Veljkovic N

SUPPLEMENTARY MATERIAL

S1 File. Performance of EpiMut, PolyPhen-2, SIFT and SNAP2 on the nCFD dataset.

Supplementary Table 1. EpiMut dataset, containing 1303 somatic mutations and 1578 neutral SNPs in 19 epigenetic factors mutated in blood malignancies. Somatic mutations were obtained from COSMIC database, while neutral SNPs were obtained from dbSNP.

Gene	AAS	Pathogenic status	CFD or nCFD	Gene	AAS	Pathogenic status	CFD or nCFD
ARID1A	A1077G	MUT	CFD	KMT2C	G2487D	SNP	nCFD
ARID1A	A873V	MUT	nCFD	KMT2C	G2888D	SNP	nCFD
ARID1A	C1981R	MUT	CFD	KMT2C	G315C	SNP	CFD
ARID1A	M618V	MUT	nCFD	KMT2C	G4135A	SNP	nCFD
ARID1A	N629K	MUT	nCFD	KMT2C	G838S	SNP	nCFD
ARID1A	P1147L	MUT	nCFD	KMT2C	G908C	SNP	nCFD
ARID1A	P1163L	MUT	nCFD	KMT2C	H1574R	SNP	nCFD
ARID1A	P1447S	MUT	nCFD	KMT2C	H2320R	SNP	nCFD
ARID1A	P1456L	MUT	nCFD	KMT2C	H365Q	SNP	nCFD
ARID1A	P1601S	MUT	nCFD	KMT2C	H3936L	SNP	nCFD
ARID1A	P1627A	MUT	nCFD	KMT2C	H4130D	SNP	nCFD
ARID1A	P1739R	MUT	nCFD	KMT2C	H4339P	SNP	nCFD

ARID1A	P2102H	MUT	CFD	KMT2C	H4466Q	SNP	CFD
ARID1A	P251S	MUT	nCFD	KMT2C	H4900Y	SNP	nCFD
ARID1A	P408L	MUT	nCFD	KMT2C	I1434N	SNP	nCFD
ARID1A	P870T	MUT	nCFD	KMT2C	I1862V	SNP	nCFD
ARID1A	R1463H	MUT	nCFD	KMT2C	I2781V	SNP	nCFD
ARID1A	R1879W	MUT	nCFD	KMT2C	I3087T	SNP	nCFD
ARID1A	S1570C	MUT	nCFD	KMT2C	I323V	SNP	CFD
ARID1A	S1707G	MUT	nCFD	KMT2C	I3493V	SNP	nCFD
ARID1A	S2002F	MUT	CFD	KMT2C	I3576V	SNP	nCFD
ARID1A	S506P	MUT	nCFD	KMT2C	I3596T	SNP	nCFD
ARID1A	V1982I	MUT	CFD	KMT2C	I4080T	SNP	nCFD
ARID1A	A1872V	SNP	nCFD	KMT2C	I4084L	SNP	nCFD
ARID1A	A1877P	SNP	nCFD	KMT2C	I4084V	SNP	nCFD
ARID1A	A1927P	SNP	nCFD	KMT2C	I4379V	SNP	nCFD
ARID1A	A221V	SNP	nCFD	KMT2C	I455M	SNP	nCFD
ARID1A	A226V	SNP	nCFD	KMT2C	I455V	SNP	nCFD
ARID1A	A900S	SNP	nCFD	KMT2C	I811V	SNP	nCFD
ARID1A	A900T	SNP	nCFD	KMT2C	I823N	SNP	nCFD
ARID1A	D1893E	SNP	nCFD	KMT2C	I823T	SNP	nCFD
ARID1A	E1291D	SNP	nCFD	KMT2C	K170E	SNP	nCFD
ARID1A	E1779G	SNP	nCFD	KMT2C	K1717R	SNP	nCFD
ARID1A	G1016S	SNP	nCFD	KMT2C	K2398Q	SNP	nCFD
ARID1A	G1254S	SNP	nCFD	KMT2C	K3221E	SNP	nCFD
ARID1A	G1255R	SNP	nCFD	KMT2C	K339N	SNP	nCFD
ARID1A	G125S	SNP	nCFD	KMT2C	K3940R	SNP	nCFD
ARID1A	G1293A	SNP	nCFD	KMT2C	L1452I	SNP	nCFD
ARID1A	G180A	SNP	nCFD	KMT2C	L2420R	SNP	nCFD
ARID1A	G275A	SNP	nCFD	KMT2C	L2653P	SNP	nCFD
ARID1A	G275V	SNP	nCFD	KMT2C	L2653V	SNP	nCFD
ARID1A	G397R	SNP	nCFD	KMT2C	L291F	SNP	CFD
ARID1A	G444S	SNP	nCFD	KMT2C	L3311F	SNP	nCFD
ARID1A	G864S	SNP	nCFD	KMT2C	L3589F	SNP	nCFD
ARID1A	I1173F	SNP	nCFD	KMT2C	L3589V	SNP	nCFD
ARID1A	I692V	SNP	nCFD	KMT2C	L4143F	SNP	nCFD
ARID1A	K1795N	SNP	nCFD	KMT2C	L732F	SNP	nCFD
ARID1A	K1795R	SNP	nCFD	KMT2C	M1140I	SNP	nCFD
ARID1A	L1831V	SNP	nCFD	KMT2C	M1819T	SNP	nCFD
ARID1A	M1036I	SNP	CFD	KMT2C	M1895V	SNP	nCFD
ARID1A	M872T	SNP	nCFD	KMT2C	M3032T	SNP	nCFD
ARID1A	M961L	SNP	nCFD	KMT2C	M3275V	SNP	nCFD
ARID1A	N1313S	SNP	nCFD	KMT2C	M3329I	SNP	nCFD
ARID1A	N1705S	SNP	nCFD	KMT2C	M555I	SNP	nCFD
ARID1A	N1986S	SNP	CFD	KMT2C	M689V	SNP	nCFD
ARID1A	N2160D	SNP	CFD	KMT2C	M741T	SNP	nCFD
ARID1A	N2220S	SNP	CFD	KMT2C	N1118S	SNP	nCFD
ARID1A	P1175L	SNP	nCFD	KMT2C	N1385S	SNP	nCFD
ARID1A	P120S	SNP	nCFD	KMT2C	N1601S	SNP	nCFD
ARID1A	P1244S	SNP	nCFD	KMT2C	N2532S	SNP	nCFD
ARID1A	P1467R	SNP	nCFD	KMT2C	N2830D	SNP	nCFD
ARID1A	P158S	SNP	nCFD	KMT2C	N2924D	SNP	nCFD
ARID1A	P1771S	SNP	nCFD	KMT2C	N3338S	SNP	nCFD
ARID1A	P1771T	SNP	nCFD	KMT2C	N3505D	SNP	nCFD
ARID1A	P1897A	SNP	nCFD	KMT2C	N3505K	SNP	nCFD
ARID1A	P431R	SNP	nCFD	KMT2C	N3808D	SNP	nCFD
ARID1A	P580T	SNP	nCFD	KMT2C	N3808T	SNP	nCFD
ARID1A	Q1342P	SNP	nCFD	KMT2C	N3808Y	SNP	nCFD
ARID1A	Q1399L	SNP	nCFD	KMT2C	N452S	SNP	nCFD
ARID1A	Q1399P	SNP	nCFD	KMT2C	N4593S	SNP	CFD

ARID1A	Q200H	SNP	nCFD	KMT2C	N4686S	SNP	CFD
ARID1A	Q2219H	SNP	CFD	KMT2C	N567S	SNP	nCFD
ARID1A	Q583R	SNP	nCFD	KMT2C	N567T	SNP	nCFD
ARID1A	Q708P	SNP	nCFD	KMT2C	N621K	SNP	nCFD
ARID1A	R1749S	SNP	nCFD	KMT2C	N729D	SNP	nCFD
ARID1A	S1123C	SNP	nCFD	KMT2C	P1138S	SNP	nCFD
ARID1A	S1839C	SNP	nCFD	KMT2C	P1468T	SNP	nCFD
ARID1A	S1839G	SNP	nCFD	KMT2C	P157S	SNP	nCFD
ARID1A	S1944G	SNP	nCFD	KMT2C	P1669R	SNP	nCFD
ARID1A	S2211G	SNP	CFD	KMT2C	P1863A	SNP	nCFD
ARID1A	T1302A	SNP	nCFD	KMT2C	P189L	SNP	nCFD
ARID1A	T1302S	SNP	nCFD	KMT2C	P2093L	SNP	nCFD
ARID1A	T1743K	SNP	nCFD	KMT2C	P2093Q	SNP	nCFD
ARID1A	T1743M	SNP	nCFD	KMT2C	P2193L	SNP	nCFD
ARID1A	T1908P	SNP	nCFD	KMT2C	P2276S	SNP	nCFD
ARID1A	T290P	SNP	nCFD	KMT2C	P22S	SNP	nCFD
ARID1A	V1391M	SNP	nCFD	KMT2C	P2412T	SNP	nCFD
ARID1A	V1672G	SNP	nCFD	KMT2C	P2468S	SNP	nCFD
ARID1A	Y1226C	SNP	nCFD	KMT2C	P2600A	SNP	nCFD
ARID1A	Y1435C	SNP	nCFD	KMT2C	P2602R	SNP	nCFD
ARID1A	Y592C	SNP	nCFD	KMT2C	P2681L	SNP	nCFD
ASXL1	A1041T	MUT	nCFD	KMT2C	P2780S	SNP	nCFD
ASXL1	A1311T	MUT	nCFD	KMT2C	P2947S	SNP	nCFD
ASXL1	A1357T	MUT	nCFD	KMT2C	P2960T	SNP	nCFD
ASXL1	A621S	MUT	nCFD	KMT2C	P3367S	SNP	nCFD
ASXL1	A761T	MUT	nCFD	KMT2C	P3468T	SNP	nCFD
ASXL1	D1127N	MUT	nCFD	KMT2C	P3633S	SNP	nCFD
ASXL1	E1102D	MUT	nCFD	KMT2C	P4059S	SNP	nCFD
ASXL1	G1397S	MUT	nCFD	KMT2C	P4273S	SNP	nCFD
ASXL1	G652S	MUT	nCFD	KMT2C	P4302A	SNP	nCFD
ASXL1	H1126R	MUT	nCFD	KMT2C	P4302T	SNP	nCFD
ASXL1	I919V	MUT	nCFD	KMT2C	P4374S	SNP	nCFD
ASXL1	L1173S	MUT	nCFD	KMT2C	P4416S	SNP	CFD
ASXL1	N1047Y	MUT	nCFD	KMT2C	P468A	SNP	nCFD
ASXL1	N496K	MUT	nCFD	KMT2C	P468T	SNP	nCFD
ASXL1	P1330S	MUT	nCFD	KMT2C	P837A	SNP	nCFD
ASXL1	P808H	MUT	nCFD	KMT2C	Q2147H	SNP	nCFD
ASXL1	R1190K	MUT	nCFD	KMT2C	Q240E	SNP	nCFD
ASXL1	S51F	MUT	CFD	KMT2C	Q3407P	SNP	nCFD
ASXL1	S846N	MUT	nCFD	KMT2C	Q3478E	SNP	nCFD
ASXL1	T683A	MUT	nCFD	KMT2C	Q3481H	SNP	nCFD
ASXL1	V375M	MUT	nCFD	KMT2C	Q3486R	SNP	nCFD
ASXL1	A1071V	SNP	nCFD	KMT2C	Q3587E	SNP	nCFD
ASXL1	A1312V	SNP	nCFD	KMT2C	Q3591H	SNP	nCFD
ASXL1	C1204W	SNP	nCFD	KMT2C	Q3654E	SNP	nCFD
ASXL1	C687G	SNP	nCFD	KMT2C	Q3696E	SNP	nCFD
ASXL1	C687R	SNP	nCFD	KMT2C	Q3836K	SNP	nCFD
ASXL1	D1017A	SNP	nCFD	KMT2C	Q448H	SNP	nCFD
ASXL1	D1127E	SNP	nCFD	KMT2C	R1906Q	SNP	nCFD
ASXL1	D1163N	SNP	nCFD	KMT2C	R1916G	SNP	nCFD
ASXL1	D1252G	SNP	nCFD	KMT2C	R196T	SNP	nCFD
ASXL1	D1252N	SNP	nCFD	KMT2C	R1986Q	SNP	nCFD
ASXL1	D741V	SNP	nCFD	KMT2C	R2013K	SNP	nCFD
ASXL1	D799Y	SNP	nCFD	KMT2C	R2463H	SNP	nCFD
ASXL1	E1033V	SNP	nCFD	KMT2C	R2497H	SNP	nCFD
ASXL1	E1383K	SNP	nCFD	KMT2C	R2497L	SNP	nCFD
ASXL1	E477Q	SNP	nCFD	KMT2C	R2596Q	SNP	nCFD
ASXL1	E865K	SNP	nCFD	KMT2C	R284Q	SNP	CFD

ASXL1	F81S	SNP	CFD	KMT2C	R2963C	SNP	nCFD
ASXL1	G1026E	SNP	nCFD	KMT2C	R3077H	SNP	nCFD
ASXL1	G1154R	SNP	nCFD	KMT2C	R3350K	SNP	nCFD
ASXL1	G1375W	SNP	nCFD	KMT2C	R3403C	SNP	nCFD
ASXL1	G643A	SNP	nCFD	KMT2C	R4017S	SNP	nCFD
ASXL1	G643E	SNP	nCFD	KMT2C	R4145C	SNP	nCFD
ASXL1	G643V	SNP	nCFD	KMT2C	R4145H	SNP	nCFD
ASXL1	G653R	SNP	nCFD	KMT2C	R4145L	SNP	nCFD
ASXL1	G987R	SNP	nCFD	KMT2C	R4162L	SNP	nCFD
ASXL1	H1524Y	SNP	CFD	KMT2C	R4162Q	SNP	nCFD
ASXL1	H633R	SNP	nCFD	KMT2C	R4162W	SNP	nCFD
ASXL1	I268F	SNP	CFD	KMT2C	R4334Q	SNP	nCFD
ASXL1	I268V	SNP	CFD	KMT2C	R4597C	SNP	CFD
ASXL1	I507N	SNP	nCFD	KMT2C	R4608H	SNP	CFD
ASXL1	I552V	SNP	nCFD	KMT2C	R4673C	SNP	CFD
ASXL1	K1157E	SNP	nCFD	KMT2C	R526H	SNP	nCFD
ASXL1	K838R	SNP	nCFD	KMT2C	R526P	SNP	nCFD
ASXL1	L1325F	SNP	nCFD	KMT2C	R841L	SNP	nCFD
ASXL1	L1490F	SNP	CFD	KMT2C	R841Q	SNP	nCFD
ASXL1	L386F	SNP	nCFD	KMT2C	R841W	SNP	nCFD
ASXL1	M1249V	SNP	nCFD	KMT2C	R886H	SNP	nCFD
ASXL1	M168L	SNP	nCFD	KMT2C	R894Q	SNP	nCFD
ASXL1	N986S	SNP	nCFD	KMT2C	R909G	SNP	nCFD
ASXL1	P1259L	SNP	nCFD	KMT2C	R909K	SNP	nCFD
ASXL1	P1330L	SNP	nCFD	KMT2C	S1148L	SNP	nCFD
ASXL1	P1340T	SNP	nCFD	KMT2C	S1449A	SNP	nCFD
ASXL1	P1358A	SNP	nCFD	KMT2C	S1724I	SNP	nCFD
ASXL1	P570L	SNP	nCFD	KMT2C	S1733L	SNP	nCFD
ASXL1	P779L	SNP	nCFD	KMT2C	S1836N	SNP	nCFD
ASXL1	Q372K	SNP	nCFD	KMT2C	S1860C	SNP	nCFD
ASXL1	Q89R	SNP	nCFD	KMT2C	S1931L	SNP	nCFD
ASXL1	R1224T	SNP	nCFD	KMT2C	S2025T	SNP	nCFD
ASXL1	R1247C	SNP	nCFD	KMT2C	S210N	SNP	nCFD
ASXL1	R271P	SNP	CFD	KMT2C	S2308C	SNP	nCFD
ASXL1	R394C	SNP	nCFD	KMT2C	S2897F	SNP	nCFD
ASXL1	R394H	SNP	nCFD	KMT2C	S2984F	SNP	nCFD
ASXL1	R499H	SNP	nCFD	KMT2C	S2L	SNP	nCFD
ASXL1	R620C	SNP	nCFD	KMT2C	S338L	SNP	nCFD
ASXL1	R625Q	SNP	nCFD	KMT2C	S3547P	SNP	nCFD
ASXL1	S1166R	SNP	nCFD	KMT2C	S3660L	SNP	nCFD
ASXL1	S1212F	SNP	nCFD	KMT2C	S4300A	SNP	nCFD
ASXL1	S1231F	SNP	nCFD	KMT2C	S4300P	SNP	nCFD
ASXL1	S1428P	SNP	nCFD	KMT2C	S730C	SNP	nCFD
ASXL1	S370T	SNP	nCFD	KMT2C	S764F	SNP	nCFD
ASXL1	S412F	SNP	nCFD	KMT2C	S772L	SNP	nCFD
ASXL1	T1010M	SNP	nCFD	KMT2C	S793L	SNP	nCFD
ASXL1	T1010R	SNP	nCFD	KMT2C	S888T	SNP	nCFD
ASXL1	T1221K	SNP	nCFD	KMT2C	T1358A	SNP	nCFD
ASXL1	T1372S	SNP	nCFD	KMT2C	T1621I	SNP	nCFD
ASXL1	V1069I	SNP	nCFD	KMT2C	T1636P	SNP	nCFD
ASXL1	V1216L	SNP	nCFD	KMT2C	T2008A	SNP	nCFD
ASXL1	V1297I	SNP	nCFD	KMT2C	T3017K	SNP	nCFD
ASXL1	V807I	SNP	nCFD	KMT2C	T3017S	SNP	nCFD
ASXL1	V907I	SNP	nCFD	KMT2C	T316S	SNP	CFD
ATM	A2062V	MUT	nCFD	KMT2C	T3317I	SNP	nCFD
ATM	A2308T	MUT	CFD	KMT2C	T3317K	SNP	nCFD
ATM	A2524S	MUT	nCFD	KMT2C	T3317R	SNP	nCFD
ATM	A2626V	MUT	nCFD	KMT2C	T3586I	SNP	nCFD

ATM	A3006T	MUT	nCFD	KMT2C	T3857M	SNP	nCFD
ATM	A350T	MUT	nCFD	KMT2C	T3884M	SNP	nCFD
ATM	C107F	MUT	CFD	KMT2C	T4688A	SNP	CFD
ATM	C977S	MUT	nCFD	KMT2C	T4688P	SNP	CFD
ATM	D1682H	MUT	nCFD	KMT2C	T61A	SNP	nCFD
ATM	D1781H	MUT	nCFD	KMT2C	V1163L	SNP	nCFD
ATM	D1930V	MUT	nCFD	KMT2C	V2171I	SNP	nCFD
ATM	D2395V	MUT	CFD	KMT2C	V2428A	SNP	nCFD
ATM	D2448A	MUT	CFD	KMT2C	V262A	SNP	CFD
ATM	D2725E	MUT	CFD	KMT2C	V3102L	SNP	nCFD
ATM	D2725G	MUT	CFD	KMT2C	V3811I	SNP	nCFD
ATM	D479Y	MUT	nCFD	KMT2C	V4644G	SNP	CFD
ATM	E1959K	MUT	nCFD	KMT2C	V4668I	SNP	CFD
ATM	E2039G	MUT	nCFD	KMT2C	V634L	SNP	nCFD
ATM	E2164Q	MUT	CFD	KMT2C	V700L	SNP	nCFD
ATM	E28K	MUT	CFD	KMT2C	V919L	SNP	nCFD
ATM	F1025L	MUT	nCFD	KMT2C	V920A	SNP	nCFD
ATM	F2393I	MUT	CFD	KMT2C	W4352L	SNP	nCFD
ATM	F2732V	MUT	CFD	KMT2C	Y2218S	SNP	nCFD
ATM	F2827L	MUT	CFD	KMT2C	Y2466C	SNP	nCFD
ATM	F858S	MUT	nCFD	KMT2C	Y3699C	SNP	nCFD
ATM	G1522R	MUT	nCFD	KMT2C	Y4774H	SNP	nCFD
ATM	G2063E	MUT	nCFD	KMT2C	Y987H	SNP	nCFD
ATM	G2072R	MUT	nCFD	KMT2D	A1788T	MUT	nCFD
ATM	G2694R	MUT	nCFD	KMT2D	A1841V	MUT	nCFD
ATM	G2695A	MUT	nCFD	KMT2D	A3552G	MUT	nCFD
ATM	G2695V	MUT	nCFD	KMT2D	A3593E	MUT	nCFD
ATM	H2038R	MUT	nCFD	KMT2D	A3678V	MUT	nCFD
ATM	H2125R	MUT	CFD	KMT2D	A4760V	MUT	nCFD
ATM	I190K	MUT	nCFD	KMT2D	A4862G	MUT	nCFD
ATM	I2311F	MUT	CFD	KMT2D	A4908V	MUT	nCFD
ATM	I2888T	MUT	CFD	KMT2D	A4926T	MUT	nCFD
ATM	I352T	MUT	nCFD	KMT2D	A5121V	MUT	CFD
ATM	K2657N	MUT	nCFD	KMT2D	A5187P	MUT	CFD
ATM	K2687E	MUT	nCFD	KMT2D	A5272P	MUT	CFD
ATM	K2717M	MUT	CFD	KMT2D	C1383Y	MUT	nCFD
ATM	K3018N	MUT	nCFD	KMT2D	C1430F	MUT	CFD
ATM	L1206V	MUT	nCFD	KMT2D	C1456Y	MUT	CFD
ATM	L120R	MUT	CFD	KMT2D	C214Y	MUT	CFD
ATM	L2033V	MUT	nCFD	KMT2D	C5338R	MUT	nCFD
ATM	L2293P	MUT	CFD	KMT2D	D1343V	MUT	nCFD
ATM	L2416P	MUT	CFD	KMT2D	D2769N	MUT	nCFD
ATM	L2427P	MUT	CFD	KMT2D	D5257V	MUT	CFD
ATM	L2427R	MUT	CFD	KMT2D	E226G	MUT	nCFD
ATM	L2445P	MUT	CFD	KMT2D	E436K	MUT	nCFD
ATM	L2447W	MUT	CFD	KMT2D	F1790L	MUT	nCFD
ATM	L2490F	MUT	nCFD	KMT2D	F301C	MUT	CFD
ATM	L2780H	MUT	CFD	KMT2D	G1234E	MUT	nCFD
ATM	L2890V	MUT	CFD	KMT2D	G1255D	MUT	nCFD
ATM	L2945M	MUT	CFD	KMT2D	G1434D	MUT	CFD
ATM	L2952V	MUT	CFD	KMT2D	G1808E	MUT	nCFD
ATM	M2405L	MUT	CFD	KMT2D	G3095D	MUT	nCFD
ATM	M2616I	MUT	nCFD	KMT2D	G3095S	MUT	nCFD
ATM	M3011K	MUT	nCFD	KMT2D	G4120D	MUT	nCFD
ATM	N1081S	MUT	nCFD	KMT2D	G4593E	MUT	nCFD
ATM	N1855S	MUT	nCFD	KMT2D	G4716R	MUT	nCFD
ATM	N2875S	MUT	CFD	KMT2D	G5410E	MUT	CFD
ATM	P1069S	MUT	nCFD	KMT2D	H1405R	MUT	nCFD

ATM	P2353S	MUT	CFD	KMT2D	H1453R	MUT	
ATM	P2699S	MUT	nCFD	KMT2D	K1412R	MUT	
ATM	P604S	MUT	nCFD	KMT2D	L2610P	MUT	nCFD
ATM	Q2522H	MUT	nCFD	KMT2D	L303P	MUT	nCFD
ATM	Q2730R	MUT	CFD	KMT2D	L4075F	MUT	CFD
ATM	Q984E	MUT	nCFD	KMT2D	L4786P	MUT	
ATM	R2034P	MUT	nCFD	KMT2D	L5293H	MUT	nCFD
ATM	R2263S	MUT	CFD	KMT2D	L5411H	MUT	CFD
ATM	R2486G	MUT	CFD	KMT2D	M3777R	MUT	CFD
ATM	R248Q	MUT	nCFD	KMT2D	P1135S	MUT	nCFD
ATM	R2526S	MUT	nCFD	KMT2D	P1170L	MUT	nCFD
ATM	R3008C	MUT	nCFD	KMT2D	P1669L	MUT	nCFD
ATM	R3008H	MUT	nCFD	KMT2D	P1984L	MUT	nCFD
ATM	R981C	MUT	nCFD	KMT2D	P2781S	MUT	nCFD
ATM	S1863F	MUT	nCFD	KMT2D	P2930S	MUT	nCFD
ATM	S2165F	MUT	CFD	KMT2D	P3100R	MUT	nCFD
ATM	S2489F	MUT	CFD	CFD	KMT2D	A1565V	SNP
ATM	S2859F	MUT					

ATM	E708K	SNP	nCFD	KMT2D	A4594P	SNP	nCFD
ATM	F1463C	SNP	nCFD	KMT2D	A4599V	SNP	nCFD
ATM	F3002V	SNP	nCFD	KMT2D	A4655V	SNP	nCFD
ATM	F582L	SNP	nCFD	KMT2D	A476T	SNP	nCFD
ATM	F627C	SNP	nCFD	KMT2D	A4965T	SNP	nCFD
ATM	F763L	SNP	nCFD	KMT2D	A765P	SNP	nCFD
ATM	G1307R	SNP	nCFD	KMT2D	C239R	SNP	nCFD
ATM	G2023R	SNP	nCFD	KMT2D	C323Y	SNP	CFD
ATM	G2180V	SNP	CFD	KMT2D	D1646Y	SNP	nCFD
ATM	G2709S	SNP	nCFD	KMT2D	D1825N	SNP	nCFD
ATM	G514D	SNP	nCFD	KMT2D	D2066G	SNP	nCFD
ATM	G833A	SNP	nCFD	KMT2D	D2092N	SNP	nCFD
ATM	H1380Y	SNP	nCFD	KMT2D	D3419G	SNP	nCFD
ATM	H1436Y	SNP	nCFD	KMT2D	D4861N	SNP	nCFD
ATM	H42R	SNP	CFD	KMT2D	D632E	SNP	nCFD
ATM	H674R	SNP	nCFD	KMT2D	E1549D	SNP	nCFD
ATM	H996Q	SNP	nCFD	KMT2D	E1663K	SNP	nCFD
ATM	I124V	SNP	CFD	KMT2D	E446A	SNP	nCFD
ATM	I1422V	SNP	nCFD	KMT2D	E446G	SNP	nCFD
ATM	I1547V	SNP	nCFD	KMT2D	E4805K	SNP	nCFD
ATM	I1688T	SNP	nCFD	KMT2D	E4939K	SNP	nCFD
ATM	I2030V	SNP	nCFD	KMT2D	E913K	SNP	nCFD
ATM	I709M	SNP	nCFD	KMT2D	F1961L	SNP	nCFD
ATM	I879V	SNP	nCFD	KMT2D	F2566L	SNP	nCFD
ATM	K1454N	SNP	nCFD	KMT2D	F3515V	SNP	nCFD
ATM	K1992T	SNP	nCFD	KMT2D	F372Y	SNP	nCFD
ATM	K482Q	SNP	nCFD	KMT2D	G1286R	SNP	nCFD
ATM	K810E	SNP	nCFD	KMT2D	G1323D	SNP	nCFD
ATM	K92T	SNP	CFD	KMT2D	G2279E	SNP	nCFD
ATM	L1420F	SNP	nCFD	KMT2D	G2493E	SNP	nCFD
ATM	L1541F	SNP	nCFD	KMT2D	G2569S	SNP	nCFD
ATM	L2307F	SNP	CFD	KMT2D	G3169V	SNP	nCFD
ATM	L2330V	SNP	CFD	KMT2D	G3324V	SNP	nCFD
ATM	L2332P	SNP	CFD	KMT2D	G3366S	SNP	nCFD
ATM	L2332R	SNP	CFD	KMT2D	G3694V	SNP	nCFD
ATM	L2965F	SNP	nCFD	KMT2D	G3819D	SNP	nCFD
ATM	L432Q	SNP	nCFD	KMT2D	G4189A	SNP	nCFD
ATM	L546V	SNP	nCFD	KMT2D	G4373S	SNP	nCFD
ATM	L942F	SNP	nCFD	KMT2D	G4489R	SNP	nCFD
ATM	M1040V	SNP	nCFD	KMT2D	G4833R	SNP	nCFD
ATM	M1210T	SNP	nCFD	KMT2D	G4971D	SNP	nCFD
ATM	M1321I	SNP	nCFD	KMT2D	G4971V	SNP	nCFD
ATM	M1909T	SNP	nCFD	KMT2D	H769P	SNP	nCFD
ATM	M2224V	SNP	CFD	KMT2D	I1344V	SNP	nCFD
ATM	M963V	SNP	nCFD	KMT2D	I1509V	SNP	nCFD
ATM	N1005S	SNP	nCFD	KMT2D	I2026V	SNP	nCFD
ATM	N1094S	SNP	nCFD	KMT2D	I5523T	SNP	nCFD
ATM	N1356D	SNP	nCFD	KMT2D	K2548E	SNP	nCFD
ATM	N1431S	SNP	nCFD	KMT2D	K287E	SNP	CFD
ATM	N1477K	SNP	nCFD	KMT2D	K4416R	SNP	nCFD
ATM	N1650S	SNP	nCFD	KMT2D	K4494T	SNP	nCFD
ATM	N1650T	SNP	nCFD	KMT2D	L1599F	SNP	nCFD
ATM	N2501S	SNP	nCFD	KMT2D	L2245V	SNP	nCFD
ATM	N358S	SNP	nCFD	KMT2D	L2398V	SNP	nCFD
ATM	N504S	SNP	nCFD	KMT2D	L3367F	SNP	nCFD
ATM	N870D	SNP	nCFD	KMT2D	L3619R	SNP	nCFD
ATM	P1054H	SNP	nCFD	KMT2D	L474S	SNP	nCFD
ATM	P1054R	SNP	nCFD	KMT2D	M1098I	SNP	nCFD

ATM	P1480L	SNP	nCFD	KMT2D	M1417I	SNP	nCFD
ATM	P2974L	SNP	nCFD	KMT2D	M2652L	SNP	nCFD
ATM	Q1128R	SNP	nCFD	KMT2D	M307R	SNP	CFD
ATM	Q1982L	SNP	nCFD	KMT2D	M3161T	SNP	nCFD
ATM	Q1982R	SNP	nCFD	KMT2D	M3349V	SNP	nCFD
ATM	R1086C	SNP	nCFD	KMT2D	M3777I	SNP	nCFD
ATM	R114K	SNP	CFD	KMT2D	M3870I	SNP	nCFD
ATM	R1150T	SNP	nCFD	KMT2D	M5029L	SNP	nCFD
ATM	R1489H	SNP	nCFD	KMT2D	M5135V	SNP	CFD
ATM	R1489L	SNP	nCFD	KMT2D	M635V	SNP	nCFD
ATM	R1898Q	SNP	nCFD	KMT2D	M716T	SNP	nCFD
ATM	R1918T	SNP	nCFD	KMT2D	N106S	SNP	nCFD
ATM	R2034Q	SNP	nCFD	KMT2D	N2085K	SNP	nCFD
ATM	R2392W	SNP	CFD	KMT2D	N2965S	SNP	nCFD
ATM	R2461C	SNP	CFD	KMT2D	N2965T	SNP	nCFD
ATM	R2461S	SNP	CFD	KMT2D	P1039S	SNP	nCFD
ATM	R2580S	SNP	nCFD	KMT2D	P1191L	SNP	nCFD
ATM	R2691C	SNP	nCFD	KMT2D	P2100L	SNP	nCFD
ATM	R2719H	SNP	CFD	KMT2D	P2100Q	SNP	nCFD
ATM	R2719L	SNP	CFD	KMT2D	P2129S	SNP	nCFD
ATM	R2748T	SNP	CFD	KMT2D	P2145L	SNP	nCFD
ATM	R2832H	SNP	CFD	KMT2D	P2210L	SNP	nCFD
ATM	R337H	SNP	nCFD	KMT2D	P2271S	SNP	nCFD
ATM	R451C	SNP	nCFD	KMT2D	P2349L	SNP	nCFD
ATM	R451H	SNP	nCFD	KMT2D	P2352L	SNP	nCFD
ATM	R45W	SNP	CFD	KMT2D	P2354L	SNP	nCFD
ATM	R568I	SNP	nCFD	KMT2D	P2387L	SNP	nCFD
ATM	R568K	SNP	nCFD	KMT2D	P2400A	SNP	nCFD
ATM	S1455R	SNP	nCFD	KMT2D	P2407L	SNP	nCFD
ATM	S1691R	SNP	nCFD	KMT2D	P2545A	SNP	nCFD
ATM	S1983N	SNP	nCFD	KMT2D	P2557L	SNP	nCFD
ATM	S2146T	SNP	CFD	KMT2D	P2717S	SNP	nCFD
ATM	S2168L	SNP	CFD	KMT2D	P2938L	SNP	nCFD
ATM	S2168W	SNP	CFD	KMT2D	P3129S	SNP	nCFD
ATM	S333F	SNP	nCFD	KMT2D	P3369S	SNP	nCFD
ATM	S49C	SNP	CFD	KMT2D	P3490L	SNP	nCFD
ATM	S49F	SNP	CFD	KMT2D	P3665A	SNP	nCFD
ATM	S707P	SNP	nCFD	KMT2D	P367L	SNP	nCFD
ATM	S788R	SNP	nCFD	KMT2D	P3695S	SNP	nCFD
ATM	S978P	SNP	nCFD	KMT2D	P374T	SNP	nCFD
ATM	S99G	SNP	CFD	KMT2D	P3794S	SNP	nCFD
ATM	T1100M	SNP	nCFD	KMT2D	P396R	SNP	nCFD
ATM	T1100R	SNP	nCFD	KMT2D	P4048L	SNP	nCFD
ATM	T1118A	SNP	nCFD	KMT2D	P4155T	SNP	nCFD
ATM	T1697A	SNP	nCFD	KMT2D	P439L	SNP	nCFD
ATM	T1871I	SNP	nCFD	KMT2D	P443Q	SNP	nCFD
ATM	T1880M	SNP	nCFD	KMT2D	P448R	SNP	nCFD
ATM	T1880R	SNP	nCFD	KMT2D	P460T	SNP	nCFD
ATM	T2059I	SNP	nCFD	KMT2D	P4916L	SNP	nCFD
ATM	T2113S	SNP	CFD	KMT2D	P5325T	SNP	nCFD
ATM	T2335I	SNP	CFD	KMT2D	P607L	SNP	nCFD
ATM	T2335K	SNP	CFD	KMT2D	P628L	SNP	nCFD
ATM	T2438I	SNP	CFD	KMT2D	P637T	SNP	nCFD
ATM	T2640I	SNP	nCFD	KMT2D	P647A	SNP	nCFD
ATM	T2640S	SNP	nCFD	KMT2D	P647T	SNP	nCFD
ATM	T452I	SNP	nCFD	KMT2D	P692T	SNP	nCFD
ATM	T761A	SNP	nCFD	KMT2D	P706S	SNP	nCFD
ATM	T761S	SNP	nCFD	KMT2D	P719L	SNP	nCFD

ATM	T935A	SNP	nCFD	KMT2D	P736S	SNP	nCFD
ATM	T935P	SNP	nCFD	KMT2D	P786A	SNP	nCFD
ATM	V1160L	SNP	nCFD	KMT2D	P813L	SNP	nCFD
ATM	V1160M	SNP	nCFD	KMT2D	P826H	SNP	nCFD
ATM	V1570A	SNP	nCFD	KMT2D	P826R	SNP	nCFD
ATM	V1729F	SNP	nCFD	KMT2D	P859R	SNP	nCFD
ATM	V1729L	SNP	nCFD	KMT2D	P859S	SNP	nCFD
ATM	V182L	SNP	nCFD	KMT2D	P877S	SNP	nCFD
ATM	V2079I	SNP	nCFD	KMT2D	P877T	SNP	nCFD
ATM	V2540I	SNP	nCFD	KMT2D	P881L	SNP	nCFD
ATM	V2757G	SNP	CFD	KMT2D	P886A	SNP	nCFD
ATM	V341I	SNP	nCFD	KMT2D	P886T	SNP	nCFD
ATM	V410A	SNP	nCFD	KMT2D	P949L	SNP	nCFD
ATM	V519A	SNP	nCFD	KMT2D	P972L	SNP	nCFD
ATM	V976A	SNP	nCFD	KMT2D	P998A	SNP	nCFD
ATM	V998M	SNP	nCFD	KMT2D	P998S	SNP	nCFD
ATM	W2638G	SNP	nCFD	KMT2D	P998T	SNP	nCFD
ATM	Y1300C	SNP	nCFD	KMT2D	Q3489H	SNP	nCFD
ATM	Y137F	SNP	CFD	KMT2D	Q3738R	SNP	nCFD
ATM	Y1475C	SNP	nCFD	KMT2D	Q4007K	SNP	nCFD
ATM	Y1961C	SNP	nCFD	KMT2D	R1189C	SNP	nCFD
ATM	Y2009H	SNP	nCFD	KMT2D	R1313Q	SNP	nCFD
ATRX	A1804V	MUT	CFD	KMT2D	R1814G	SNP	nCFD
ATRX	A1868P	MUT	CFD	KMT2D	R185C	SNP	CFD
ATRX	A1988D	MUT	nCFD	KMT2D	R191Q	SNP	CFD
ATRX	A2011T	MUT	nCFD	KMT2D	R2188H	SNP	nCFD
ATRX	A364T	MUT	nCFD	KMT2D	R2188L	SNP	nCFD
ATRX	C240G	MUT	nCFD	KMT2D	R2235K	SNP	nCFD
ATRX	C265Y	MUT	nCFD	KMT2D	R228C	SNP	nCFD
ATRX	D1925N	MUT	nCFD	KMT2D	R228G	SNP	nCFD
ATRX	D1949E	MUT	nCFD	KMT2D	R2443C	SNP	nCFD
ATRX	D1949Y	MUT	nCFD	KMT2D	R2460C	SNP	nCFD
ATRX	E1904V	MUT	nCFD	KMT2D	R2611C	SNP	nCFD
ATRX	E447K	MUT	nCFD	KMT2D	R2975C	SNP	nCFD
ATRX	E557K	MUT	nCFD	KMT2D	R3342C	SNP	nCFD
ATRX	E8D	MUT	nCFD	KMT2D	R3482W	SNP	nCFD
ATRX	F2210L	MUT	nCFD	KMT2D	R3596Q	SNP	nCFD
ATRX	F239L	MUT	nCFD	KMT2D	R3656C	SNP	nCFD
ATRX	F847Y	MUT	nCFD	KMT2D	R3714K	SNP	nCFD
ATRX	G175V	MUT	nCFD	KMT2D	R3727C	SNP	nCFD
ATRX	G2155V	MUT	CFD	KMT2D	R4238C	SNP	nCFD
ATRX	I1216V	MUT	nCFD	KMT2D	R4288Q	SNP	nCFD
ATRX	I353F	MUT	nCFD	KMT2D	R4288W	SNP	nCFD
ATRX	I85T	MUT	nCFD	KMT2D	R4420Q	SNP	nCFD
ATRX	K1361E	MUT	nCFD	KMT2D	R4420W	SNP	nCFD
ATRX	K2225N	MUT	nCFD	KMT2D	R4455C	SNP	nCFD
ATRX	K425Q	MUT	nCFD	KMT2D	R4478W	SNP	nCFD
ATRX	L1592H	MUT	CFD	KMT2D	R4659W	SNP	nCFD
ATRX	L1651H	MUT	CFD	KMT2D	R466C	SNP	nCFD
ATRX	L1708F	MUT	CFD	KMT2D	R4729Q	SNP	nCFD
ATRX	L192F	MUT	nCFD	KMT2D	R4825G	SNP	nCFD
ATRX	L924I	MUT	nCFD	KMT2D	R4825W	SNP	nCFD
ATRX	M828I	MUT	nCFD	KMT2D	R5224H	SNP	CFD
ATRX	N2125K	MUT	CFD	KMT2D	R5229H	SNP	CFD
ATRX	P144L	MUT	nCFD	KMT2D	R5229L	SNP	CFD
ATRX	Q219K	MUT	nCFD	KMT2D	R737W	SNP	nCFD
ATRX	Q2416H	MUT	nCFD	KMT2D	R746W	SNP	nCFD
ATRX	Q929E	MUT	nCFD	KMT2D	R83Q	SNP	nCFD

ATRX	R1022Q	MUT	nCFD	KMT2D	S2215T	SNP	nCFD
ATRX	R1302I	MUT	nCFD	KMT2D	S2251L	SNP	nCFD
ATRX	R1504L	MUT	nCFD	KMT2D	S2858A	SNP	nCFD
ATRX	R2028P	MUT	CFD	KMT2D	S4010P	SNP	nCFD
ATRX	R2346M	MUT	nCFD	KMT2D	S4327C	SNP	nCFD
ATRX	R246C	MUT	nCFD	KMT2D	S4907L	SNP	nCFD
ATRX	R840I	MUT	nCFD	KMT2D	S495C	SNP	nCFD
ATRX	S2365L	MUT	nCFD	KMT2D	S849L	SNP	nCFD
ATRX	T387A	MUT	nCFD	KMT2D	T1246M	SNP	nCFD
ATRX	V1834L	MUT	CFD	KMT2D	T1370A	SNP	nCFD
ATRX	V2162A	MUT	nCFD	KMT2D	T2137A	SNP	nCFD
ATRX	W1958G	MUT	nCFD	KMT2D	T2191M	SNP	nCFD
ATRX	A462T	SNP	nCFD	KMT2D	T2524A	SNP	nCFD
ATRX	A833V	SNP	nCFD	KMT2D	T261S	SNP	nCFD
ATRX	A891G	SNP	nCFD	KMT2D	T2959N	SNP	nCFD
ATRX	D705G	SNP	nCFD	KMT2D	T3221N	SNP	nCFD
ATRX	D709V	SNP	nCFD	KMT2D	T4368A	SNP	nCFD
ATRX	D975N	SNP	nCFD	KMT2D	T4368N	SNP	nCFD
ATRX	D99H	SNP	nCFD	KMT2D	T4852I	SNP	nCFD
ATRX	E2351D	SNP	nCFD	KMT2D	T944I	SNP	nCFD
ATRX	E822D	SNP	nCFD	KMT2D	V2786M	SNP	nCFD
ATRX	E884D	SNP	nCFD	KMT2D	V401M	SNP	nCFD
ATRX	F847S	SNP	nCFD	KMT2D	V4305I	SNP	nCFD
ATRX	G1085E	SNP	nCFD	KMT2D	V4407A	SNP	nCFD
ATRX	G1217R	SNP	nCFD	KMT2D	V4639M	SNP	nCFD
ATRX	G164V	SNP	nCFD	NSD1	A1033T	MUT	nCFD
ATRX	G2489E	SNP	nCFD	NSD1	A1260S	MUT	nCFD
ATRX	H1238Y	SNP	nCFD	NSD1	A2247T	MUT	nCFD
ATRX	H475D	SNP	nCFD	NSD1	A2323V	MUT	nCFD
ATRX	H475Y	SNP	nCFD	NSD1	A376S	MUT	CFD
ATRX	H865Q	SNP	nCFD	NSD1	A520T	MUT	nCFD
ATRX	I2291M	SNP	nCFD	NSD1	A690T	MUT	nCFD
ATRX	I347M	SNP	nCFD	NSD1	A735T	MUT	nCFD
ATRX	I565V	SNP	nCFD	NSD1	C1733Y	MUT	nCFD
ATRX	I708M	SNP	nCFD	NSD1	D2525N	MUT	nCFD
ATRX	I737V	SNP	nCFD	NSD1	D659G	MUT	nCFD
ATRX	I901V	SNP	nCFD	NSD1	D875E	MUT	nCFD
ATRX	K1176M	SNP	nCFD	NSD1	E2053K	MUT	CFD
ATRX	K782R	SNP	nCFD	NSD1	E724K	MUT	nCFD
ATRX	L464V	SNP	nCFD	NSD1	F1110L	MUT	nCFD
ATRX	L98F	SNP	nCFD	NSD1	F1633L	MUT	nCFD
ATRX	M216I	SNP	nCFD	NSD1	G1364E	MUT	nCFD
ATRX	M2410T	SNP	nCFD	NSD1	G1518C	MUT	nCFD
ATRX	M2479V	SNP	nCFD	NSD1	G1656V	MUT	nCFD
ATRX	N1860S	SNP	CFD	NSD1	G971D	MUT	nCFD
ATRX	N1860T	SNP	CFD	NSD1	H515L	MUT	nCFD
ATRX	N237H	SNP	nCFD	NSD1	H515R	MUT	nCFD
ATRX	P609A	SNP	nCFD	NSD1	I636V	MUT	nCFD
ATRX	P667L	SNP	nCFD	NSD1	K1121E	MUT	nCFD
ATRX	P717L	SNP	nCFD	NSD1	L2329R	MUT	nCFD
ATRX	P717R	SNP	nCFD	NSD1	L7P	MUT	nCFD
ATRX	Q545E	SNP	nCFD	NSD1	M2456T	MUT	nCFD
ATRX	Q883R	SNP	nCFD	NSD1	N2057D	MUT	CFD
ATRX	R1506L	SNP	nCFD	NSD1	P130S	MUT	nCFD
ATRX	R1687T	SNP	CFD	NSD1	P1350L	MUT	nCFD
ATRX	R390C	SNP	nCFD	NSD1	P1726L	MUT	nCFD
ATRX	R808Q	SNP	nCFD	NSD1	P2225S	MUT	nCFD
ATRX	R907Q	SNP	nCFD	NSD1	P360L	MUT	CFD

ATRX	S1376N	SNP	nCFD	NSD1	P530L	MUT	nCFD
ATRX	S1732C	SNP	CFD	NSD1	P884S	MUT	nCFD
ATRX	S1990T	SNP	nCFD	NSD1	R1233Q	MUT	nCFD
ATRX	S550G	SNP	nCFD	NSD1	R2219H	MUT	nCFD
ATRX	T1146N	SNP	nCFD	NSD1	R362Q	MUT	CFD
ATRX	T1146S	SNP	nCFD	NSD1	S213N	MUT	nCFD
ATRX	T870I	SNP	nCFD	NSD1	S316A	MUT	nCFD
ATRX	V1181L	SNP	nCFD	NSD1	S486C	MUT	nCFD
ATRX	V936L	SNP	nCFD	NSD1	S868P	MUT	nCFD
ATRX	Y615H	SNP	nCFD	NSD1	S965A	MUT	nCFD
BCOR	A1537T	MUT	CFD	NSD1	T2029A	MUT	CFD
BCOR	A967V	MUT	nCFD	NSD1	T266A	MUT	nCFD
BCOR	D1536N	MUT	CFD	NSD1	V1620I	MUT	nCFD
BCOR	E1005K	MUT	nCFD	NSD1	V614L	MUT	nCFD
BCOR	E1544K	MUT	CFD	NSD1	Y1971C	MUT	CFD
BCOR	G154E	MUT	nCFD	NSD1	A1036P	SNP	nCFD
BCOR	G421V	MUT	nCFD	NSD1	A2546T	SNP	nCFD
BCOR	G479R	MUT	nCFD	NSD1	A2594T	SNP	nCFD
BCOR	H1367D	MUT	CFD	NSD1	A2684T	SNP	nCFD
BCOR	K1228R	MUT	CFD	NSD1	A2691T	SNP	nCFD
BCOR	L1203H	MUT	CFD	NSD1	A555T	SNP	nCFD
BCOR	N1459S	MUT	nCFD	NSD1	A564S	SNP	nCFD
BCOR	N629S	MUT	nCFD	NSD1	A691T	SNP	nCFD
BCOR	P1205S	MUT	CFD	NSD1	C310R	SNP	nCFD
BCOR	P663T	MUT	nCFD	NSD1	D163N	SNP	nCFD
BCOR	P840S	MUT	nCFD	NSD1	D163Y	SNP	nCFD
BCOR	R1375Q	MUT	CFD	NSD1	D1737N	SNP	nCFD
BCOR	R1395Q	MUT	CFD	NSD1	D2511H	SNP	nCFD
BCOR	R1469W	MUT	CFD	NSD1	D2670V	SNP	nCFD
BCOR	R63K	MUT	nCFD	NSD1	E1051K	SNP	nCFD
BCOR	S1122L	MUT	nCFD	NSD1	E1130G	SNP	nCFD
BCOR	T1644I	MUT	CFD	NSD1	E1248G	SNP	nCFD
BCOR	V594I	MUT	nCFD	NSD1	E171D	SNP	nCFD
BCOR	A1037V	SNP	nCFD	NSD1	E2692G	SNP	nCFD
BCOR	A1149V	SNP	nCFD	NSD1	E990D	SNP	nCFD
BCOR	A184T	SNP	nCFD	NSD1	F890Y	SNP	nCFD
BCOR	D551N	SNP	nCFD	NSD1	G1132R	SNP	nCFD
BCOR	D814N	SNP	nCFD	NSD1	G2496V	SNP	nCFD
BCOR	E99D	SNP	nCFD	NSD1	H1096Y	SNP	nCFD
BCOR	G549S	SNP	nCFD	NSD1	I274V	SNP	nCFD
BCOR	G81E	SNP	nCFD	NSD1	I899T	SNP	nCFD
BCOR	H1745P	SNP	CFD	NSD1	K144E	SNP	nCFD
BCOR	K1325R	SNP	CFD	NSD1	K1631R	SNP	nCFD
BCOR	L808H	SNP	nCFD	NSD1	K2629E	SNP	nCFD
BCOR	M1575T	SNP	nCFD	NSD1	K954T	SNP	nCFD
BCOR	N390D	SNP	nCFD	NSD1	L1392F	SNP	nCFD
BCOR	N784S	SNP	nCFD	NSD1	L2277M	SNP	nCFD
BCOR	P288L	SNP	nCFD	NSD1	L254F	SNP	nCFD
BCOR	P288Q	SNP	nCFD	NSD1	L2617S	SNP	nCFD
BCOR	P483L	SNP	nCFD	NSD1	L593F	SNP	nCFD
BCOR	R1131L	SNP	nCFD	NSD1	L839R	SNP	nCFD
BCOR	R1131Q	SNP	nCFD	NSD1	M1628T	SNP	nCFD
BCOR	R1231Q	SNP	CFD	NSD1	M2250I	SNP	nCFD
BCOR	R1268G	SNP	CFD	NSD1	M2261T	SNP	nCFD
BCOR	R79Q	SNP	nCFD	NSD1	M455V	SNP	nCFD
BCOR	R850C	SNP	nCFD	NSD1	M48V	SNP	nCFD
BCOR	S1747T	SNP	CFD	NSD1	N272K	SNP	nCFD
BCOR	T870A	SNP	nCFD	NSD1	N357S	SNP	CFD

BCOR	V1138A	SNP	nCFD	NSD1	N556D	SNP	nCFD
BCOR	V679I	SNP	nCFD	NSD1	N693S	SNP	nCFD
BCOR	Y393C	SNP	nCFD	NSD1	P1060S	SNP	nCFD
BCOR	Y704C	SNP	nCFD	NSD1	P1217S	SNP	nCFD
CREBBP	A110S	MUT	nCFD	NSD1	P2282R	SNP	nCFD
CREBBP	A162V	MUT	nCFD	NSD1	Q2239H	SNP	nCFD
CREBBP	A290T	MUT	nCFD	NSD1	Q236H	SNP	nCFD
CREBBP	C1408Y	MUT	CFD	NSD1	Q2579E	SNP	nCFD
CREBBP	C1421Y	MUT	CFD	NSD1	Q2582P	SNP	nCFD
CREBBP	D1224G	MUT	CFD	NSD1	Q610R	SNP	nCFD
CREBBP	D1435E	MUT	CFD	NSD1	Q727H	SNP	nCFD
CREBBP	D1435G	MUT	CFD	NSD1	Q727L	SNP	nCFD
CREBBP	D1435N	MUT	CFD	NSD1	R1188S	SNP	nCFD
CREBBP	E1012K	MUT	nCFD	NSD1	R1471G	SNP	nCFD
CREBBP	E1278K	MUT	nCFD	NSD1	R2117Q	SNP	nCFD
CREBBP	E1963G	MUT	nCFD	NSD1	R2391I	SNP	nCFD
CREBBP	F1484C	MUT	CFD	NSD1	R2391T	SNP	nCFD
CREBBP	G1069S	MUT	nCFD	NSD1	R525Q	SNP	nCFD
CREBBP	G1411E	MUT	CFD	NSD1	R604L	SNP	nCFD
CREBBP	G1411R	MUT	CFD	NSD1	R604Q	SNP	nCFD
CREBBP	G2229S	MUT	nCFD	NSD1	R632Q	SNP	nCFD
CREBBP	G2275R	MUT	nCFD	NSD1	R941H	SNP	nCFD
CREBBP	H1487Y	MUT	CFD	NSD1	R941P	SNP	nCFD
CREBBP	I1437F	MUT	CFD	NSD1	S1241T	SNP	nCFD
CREBBP	I1483S	MUT	CFD	NSD1	S224L	SNP	nCFD
CREBBP	I1483T	MUT	CFD	NSD1	S2342L	SNP	nCFD
CREBBP	I1493K	MUT	CFD	NSD1	S2489G	SNP	nCFD
CREBBP	I2101M	MUT	CFD	NSD1	S510G	SNP	nCFD
CREBBP	K1320R	MUT	nCFD	NSD1	S552P	SNP	nCFD
CREBBP	L1434Q	MUT	CFD	NSD1	S726P	SNP	nCFD
CREBBP	L1499P	MUT	CFD	NSD1	S780L	SNP	nCFD
CREBBP	L1499Q	MUT	CFD	NSD1	S817F	SNP	nCFD
CREBBP	M1625V	MUT	CFD	NSD1	T1063A	SNP	nCFD
CREBBP	N1162D	MUT	CFD	NSD1	T1098A	SNP	nCFD
CREBBP	N1547S	MUT	CFD	NSD1	T1507M	SNP	nCFD
CREBBP	N1789K	MUT	CFD	NSD1	T2286A	SNP	nCFD
CREBBP	P1277A	MUT	nCFD	NSD1	T2382I	SNP	nCFD
CREBBP	P12H	MUT	nCFD	NSD1	T2612I	SNP	nCFD
CREBBP	P1488L	MUT	CFD	NSD1	T263A	SNP	nCFD
CREBBP	P1488Q	MUT	CFD	NSD1	V2509M	SNP	nCFD
CREBBP	P1488R	MUT	CFD	NSD1	W2663R	SNP	nCFD
CREBBP	P532T	MUT	nCFD	NSD1	Y2549N	SNP	nCFD
CREBBP	P688A	MUT	nCFD	SETD2	A2339V	MUT	nCFD
CREBBP	P858S	MUT	nCFD	SETD2	C1631S	MUT	CFD
CREBBP	Q1491E	MUT	CFD	SETD2	C1754R	MUT	nCFD
CREBBP	Q1491K	MUT	CFD	SETD2	D1022E	MUT	nCFD
CREBBP	Q1500P	MUT	CFD	SETD2	E1048Q	MUT	nCFD
CREBBP	Q1904H	MUT	nCFD	SETD2	F1473L	MUT	nCFD
CREBBP	Q2298R	MUT	nCFD	SETD2	G1231E	MUT	nCFD
CREBBP	Q2318E	MUT	nCFD	SETD2	G675R	MUT	nCFD
CREBBP	R1169C	MUT	CFD	SETD2	H756N	MUT	nCFD
CREBBP	R1347W	MUT	CFD	SETD2	I2295M	MUT	nCFD
CREBBP	R1441P	MUT	CFD	SETD2	I582M	MUT	nCFD
CREBBP	R1446C	MUT	CFD	SETD2	K1906T	MUT	nCFD
CREBBP	R1446H	MUT	CFD	SETD2	L886V	MUT	nCFD
CREBBP	R1446L	MUT	CFD	SETD2	P1470L	MUT	nCFD
CREBBP	R1563S	MUT	CFD	SETD2	P615T	MUT	nCFD
CREBBP	R1858H	MUT	nCFD	SETD2	Q872E	MUT	nCFD

CREBBP	S1436N	MUT	CFD	SETD2	R1523C	MUT	nCFD
CREBBP	S1436R	MUT	CFD	SETD2	R1625C	MUT	CFD
CREBBP	S2184N	MUT	nCFD	SETD2	R1625H	MUT	CFD
CREBBP	T1874I	MUT	nCFD	SETD2	R1686P	MUT	nCFD
CREBBP	T902I	MUT	nCFD	SETD2	R1740W	MUT	nCFD
CREBBP	V391I	MUT	CFD	SETD2	R2490W	MUT	CFD
CREBBP	W1472G	MUT	CFD	SETD2	R2510G	MUT	CFD
CREBBP	W1502R	MUT	CFD	SETD2	S791L	MUT	nCFD
CREBBP	Y1450C	MUT	CFD	SETD2	S882C	MUT	nCFD
CREBBP	Y1482C	MUT	CFD	SETD2	V1190M	MUT	nCFD
CREBBP	Y1482H	MUT	CFD	SETD2	V1576G	MUT	CFD
CREBBP	Y1482N	MUT	CFD	SETD2	V658L	MUT	nCFD
CREBBP	Y1482S	MUT	CFD	SETD2	Y1666C	MUT	CFD
CREBBP	Y1503D	MUT	CFD	SETD2	A1124V	SNP	nCFD
CREBBP	Y1503F	MUT	CFD	SETD2	A175S	SNP	nCFD
CREBBP	Y1503H	MUT	CFD	SETD2	A1868D	SNP	nCFD
CREBBP	Y1503N	MUT	CFD	SETD2	A197V	SNP	nCFD
CREBBP	Y1503S	MUT	CFD	SETD2	A2350S	SNP	nCFD
CREBBP	Y1622C	MUT	CFD	SETD2	A2350T	SNP	nCFD
CREBBP	A1907T	SNP	nCFD	SETD2	A50T	SNP	nCFD
CREBBP	A2099G	SNP	CFD	SETD2	A848V	SNP	nCFD
CREBBP	A2243V	SNP	nCFD	SETD2	C836W	SNP	nCFD
CREBBP	A2265V	SNP	nCFD	SETD2	D1057A	SNP	nCFD
CREBBP	A2347V	SNP	nCFD	SETD2	D1890G	SNP	nCFD
CREBBP	A2419V	SNP	nCFD	SETD2	D2204E	SNP	nCFD
CREBBP	A254T	SNP	nCFD	SETD2	D699G	SNP	nCFD
CREBBP	A254V	SNP	nCFD	SETD2	D868G	SNP	nCFD
CREBBP	A339G	SNP	nCFD	SETD2	E2089K	SNP	nCFD
CREBBP	A787V	SNP	nCFD	SETD2	E902Q	SNP	nCFD
CREBBP	A91S	SNP	nCFD	SETD2	G1967A	SNP	nCFD
CREBBP	A91T	SNP	nCFD	SETD2	G1967D	SNP	nCFD
CREBBP	A981T	SNP	nCFD	SETD2	G412D	SNP	nCFD
CREBBP	G2050R	SNP	CFD	SETD2	G412V	SNP	nCFD
CREBBP	G2126C	SNP	nCFD	SETD2	G675E	SNP	nCFD
CREBBP	G2126R	SNP	nCFD	SETD2	G933V	SNP	nCFD
CREBBP	G2126S	SNP	nCFD	SETD2	I1153T	SNP	nCFD
CREBBP	G98V	SNP	nCFD	SETD2	I1194V	SNP	nCFD
CREBBP	I1643V	SNP	CFD	SETD2	I1398T	SNP	nCFD
CREBBP	I445L	SNP	nCFD	SETD2	I1514L	SNP	nCFD
CREBBP	I968S	SNP	nCFD	SETD2	I563T	SNP	nCFD
CREBBP	I968T	SNP	nCFD	SETD2	I819V	SNP	nCFD
CREBBP	L551I	SNP	nCFD	SETD2	K303E	SNP	nCFD
CREBBP	L833F	SNP	nCFD	SETD2	K304T	SNP	nCFD
CREBBP	L843V	SNP	nCFD	SETD2	K629E	SNP	nCFD
CREBBP	L853R	SNP	nCFD	SETD2	K759E	SNP	nCFD
CREBBP	L853V	SNP	nCFD	SETD2	L222I	SNP	nCFD
CREBBP	M1916T	SNP	nCFD	SETD2	L514I	SNP	nCFD
CREBBP	M2161I	SNP	nCFD	SETD2	L89F	SNP	nCFD
CREBBP	M2221L	SNP	nCFD	SETD2	L981S	SNP	nCFD
CREBBP	M747V	SNP	nCFD	SETD2	M1009T	SNP	nCFD
CREBBP	N1310S	SNP	nCFD	SETD2	M1889T	SNP	nCFD
CREBBP	N1978S	SNP	nCFD	SETD2	M45V	SNP	nCFD
CREBBP	N2111S	SNP	CFD	SETD2	N2058S	SNP	nCFD
CREBBP	N984Y	SNP	nCFD	SETD2	N2373S	SNP	nCFD
CREBBP	P1053L	SNP	nCFD	SETD2	N579I	SNP	nCFD
CREBBP	P1053S	SNP	nCFD	SETD2	N719D	SNP	nCFD
CREBBP	P153L	SNP	nCFD	SETD2	N840S	SNP	nCFD
CREBBP	P1608T	SNP	CFD	SETD2	N951D	SNP	nCFD

CREBBP	P1947S	SNP	nCFD	SETD2	P1028S	SNP	nCFD
CREBBP	P578S	SNP	nCFD	SETD2	P104T	SNP	nCFD
CREBBP	P847T	SNP	nCFD	SETD2	P1141L	SNP	nCFD
CREBBP	Q136E	SNP	nCFD	SETD2	P167L	SNP	nCFD
CREBBP	Q2200L	SNP	nCFD	SETD2	P186L	SNP	nCFD
CREBBP	Q2208H	SNP	nCFD	SETD2	P190L	SNP	nCFD
CREBBP	Q2215E	SNP	nCFD	SETD2	P193L	SNP	nCFD
CREBBP	Q278P	SNP	nCFD	SETD2	P2057S	SNP	nCFD
CREBBP	R1682C	SNP	nCFD	SETD2	P2379L	SNP	nCFD
CREBBP	R386Q	SNP	CFD	SETD2	P617S	SNP	nCFD
CREBBP	S 1043 L	SNP	nCFD	SETD2	P751T	SNP	nCFD
CREBBP	S128C	SNP	nCFD	SETD2	Q1147R	SNP	nCFD
CREBBP	S1386C	SNP	CFD	SETD2	Q1734H	SNP	nCFD
CREBBP	S141C	SNP	nCFD	SETD2	Q1981R	SNP	nCFD
CREBBP	S2425C	SNP	nCFD	SETD2	Q662H	SNP	nCFD
CREBBP	S299G	SNP	nCFD	SETD2	Q68R	SNP	nCFD
CREBBP	S56C	SNP	nCFD	SETD2	R1297H	SNP	nCFD
CREBBP	S56R	SNP	nCFD	SETD2	R1335H	SNP	nCFD
CREBBP	S861F	SNP	nCFD	SETD2	R1509K	SNP	nCFD
CREBBP	S893L	SNP	nCFD	SETD2	R329W	SNP	nCFD
CREBBP	S893W	SNP	nCFD	SETD2	R402Q	SNP	nCFD
CREBBP	T1468I	SNP	CFD	SETD2	R414G	SNP	nCFD
CREBBP	T1575A	SNP	CFD	SETD2	R433C	SNP	nCFD
CREBBP	T910A	SNP	nCFD	SETD2	R448Q	SNP	nCFD
CREBBP	T910S	SNP	nCFD	SETD2	R471K	SNP	nCFD
CREBBP	T941N	SNP	nCFD	SETD2	R472H	SNP	nCFD
CREBBP	V701L	SNP	nCFD	SETD2	R541Q	SNP	nCFD
CREBBP	V992I	SNP	nCFD	SETD2	R976G	SNP	nCFD
CREBBP	V994M	SNP	nCFD	SETD2	S1001C	SNP	nCFD
CREBBP	W1151C	SNP	CFD	SETD2	S1059N	SNP	nCFD
CREBBP	Y1204F	SNP	CFD	SETD2	S130Y	SNP	nCFD
DNMT3A	A368T	MUT	CFD	SETD2	S1888I	SNP	nCFD
DNMT3A	A410T	MUT	nCFD	SETD2	S1940G	SNP	nCFD
DNMT3A	A741V	MUT	CFD	SETD2	S1940N	SNP	nCFD
DNMT3A	A910P	MUT	nCFD	SETD2	S2193N	SNP	nCFD
DNMT3A	A910V	MUT	nCFD	SETD2	S2279A	SNP	nCFD
DNMT3A	C562Y	MUT	nCFD	SETD2	S2424N	SNP	nCFD
DNMT3A	D11A	MUT	nCFD	SETD2	S262R	SNP	nCFD
DNMT3A	D389N	MUT	nCFD	SETD2	S705L	SNP	nCFD
DNMT3A	D614Y	MUT	nCFD	SETD2	S708F	SNP	nCFD
DNMT3A	D748N	MUT	CFD	SETD2	T1033A	SNP	nCFD
DNMT3A	D857N	MUT	nCFD	SETD2	T1077A	SNP	nCFD
DNMT3A	E119V	MUT	nCFD	SETD2	T1483A	SNP	nCFD
DNMT3A	E733G	MUT	CFD	SETD2	T1483S	SNP	nCFD
DNMT3A	F414L	MUT	nCFD	SETD2	T1866A	SNP	nCFD
DNMT3A	F731C	MUT	CFD	SETD2	T2037A	SNP	nCFD
DNMT3A	F731V	MUT	CFD	SETD2	T592K	SNP	nCFD
DNMT3A	F732L	MUT	CFD	SETD2	T767A	SNP	nCFD
DNMT3A	F732S	MUT	CFD	SETD2	T773A	SNP	nCFD
DNMT3A	F752L	MUT	CFD	SETD2	T928R	SNP	nCFD
DNMT3A	F868S	MUT	nCFD	SETD2	V1938I	SNP	nCFD
DNMT3A	F870L	MUT	nCFD	SETD2	V2229G	SNP	nCFD
DNMT3A	F909C	MUT	nCFD	SETD2	V2259L	SNP	nCFD
DNMT3A	G308D	MUT	CFD	SETD2	V267I	SNP	nCFD
DNMT3A	G332R	MUT	CFD	SETD2	V768L	SNP	nCFD
DNMT3A	G543C	MUT	nCFD	SETD2	V816D	SNP	nCFD
DNMT3A	G646E	MUT	CFD	SETD2	Y1094C	SNP	nCFD
DNMT3A	G685R	MUT	CFD	SETD2	Y419C	SNP	nCFD

DNMT3A	G699D	MUT	CFD	SETD2	Y555S	SNP	nCFD
DNMT3A	G699R	MUT	CFD	SF3B1	A1229V	MUT	nCFD
DNMT3A	G699S	MUT	CFD	SF3B1	A364V	MUT	CFD
DNMT3A	G707D	MUT	CFD	SF3B1	A672T	MUT	nCFD
DNMT3A	G728D	MUT	CFD	SF3B1	A708T	MUT	nCFD
DNMT3A	G762C	MUT	CFD	SF3B1	A744P	MUT	nCFD
DNMT3A	H873N	MUT	nCFD	SF3B1	C1204R	MUT	nCFD
DNMT3A	I369N	MUT	CFD	SF3B1	D781G	MUT	nCFD
DNMT3A	I655N	MUT	CFD	SF3B1	D894G	MUT	nCFD
DNMT3A	I695T	MUT	CFD	SF3B1	D894N	MUT	nCFD
DNMT3A	I705T	MUT	CFD	SF3B1	E622D	MUT	nCFD
DNMT3A	I780T	MUT	nCFD	SF3B1	E862K	MUT	nCFD
DNMT3A	K468R	MUT	nCFD	SF3B1	G1146R	MUT	nCFD
DNMT3A	K54N	MUT	nCFD	SF3B1	G605S	MUT	nCFD
DNMT3A	K826N	MUT	nCFD	SF3B1	G740E	MUT	nCFD
DNMT3A	K829R	MUT	nCFD	SF3B1	G740R	MUT	nCFD
DNMT3A	K841Q	MUT	nCFD	SF3B1	G742D	MUT	nCFD
DNMT3A	L344Q	MUT	CFD	SF3B1	G751V	MUT	nCFD
DNMT3A	L547R	MUT	nCFD	SF3B1	H662D	MUT	nCFD
DNMT3A	L653W	MUT	CFD	SF3B1	H662Q	MUT	nCFD
DNMT3A	L703V	MUT	CFD	SF3B1	H738Y	MUT	nCFD
DNMT3A	L737R	MUT	CFD	SF3B1	I704F	MUT	nCFD
DNMT3A	L754R	MUT	CFD	SF3B1	I704N	MUT	nCFD
DNMT3A	L805F	MUT	nCFD	SF3B1	I704S	MUT	nCFD
DNMT3A	L889P	MUT	nCFD	SF3B1	I704V	MUT	nCFD
DNMT3A	M880I	MUT	nCFD	SF3B1	K666E	MUT	nCFD
DNMT3A	M880V	MUT	nCFD	SF3B1	K666M	MUT	nCFD
DNMT3A	N838D	MUT	nCFD	SF3B1	K666N	MUT	nCFD
DNMT3A	N879S	MUT	nCFD	SF3B1	K666Q	MUT	nCFD
DNMT3A	P718L	MUT	CFD	SF3B1	K666R	MUT	nCFD
DNMT3A	P799A	MUT	nCFD	SF3B1	K666T	MUT	nCFD
DNMT3A	P849L	MUT	nCFD	SF3B1	K700E	MUT	nCFD
DNMT3A	P849R	MUT	nCFD	SF3B1	K741E	MUT	nCFD
DNMT3A	P904L	MUT	nCFD	SF3B1	K741N	MUT	nCFD
DNMT3A	Q356R	MUT	CFD	SF3B1	N619K	MUT	nCFD
DNMT3A	Q842E	MUT	nCFD	SF3B1	N626D	MUT	nCFD
DNMT3A	Q886R	MUT	nCFD	SF3B1	N626H	MUT	nCFD
DNMT3A	R326C	MUT	CFD	SF3B1	N626Y	MUT	nCFD
DNMT3A	R366P	MUT	CFD	SF3B1	P1224T	MUT	nCFD
DNMT3A	R474S	MUT	nCFD	SF3B1	Q659R	MUT	nCFD
DNMT3A	R635Q	MUT	CFD	SF3B1	Q670E	MUT	nCFD
DNMT3A	R635W	MUT	CFD	SF3B1	Q903R	MUT	nCFD
DNMT3A	R659C	MUT	CFD	SF3B1	R625C	MUT	nCFD
DNMT3A	R676W	MUT	CFD	SF3B1	R625G	MUT	nCFD
DNMT3A	R688H	MUT	CFD	SF3B1	R625L	MUT	nCFD
DNMT3A	R720C	MUT	CFD	SF3B1	R625S	MUT	nCFD
DNMT3A	R720G	MUT	CFD	SF3B1	R630S	MUT	nCFD
DNMT3A	R720H	MUT	CFD	SF3B1	T663I	MUT	nCFD
DNMT3A	R729Q	MUT	CFD	SF3B1	V701F	MUT	nCFD
DNMT3A	R729W	MUT	CFD	SF3B1	Y623C	MUT	nCFD
DNMT3A	R736C	MUT	CFD	SF3B1	H8Y	SNP	nCFD
DNMT3A	R736H	MUT	CFD	SF3B1	K700Q	SNP	nCFD
DNMT3A	R749C	MUT	CFD	SF3B1	T1096K	SNP	nCFD
DNMT3A	R771L	MUT	CFD	SF3B1	T7I	SNP	nCFD
DNMT3A	R792H	MUT	nCFD	SF3B1	V961I	SNP	nCFD
DNMT3A	R803S	MUT	nCFD	SPEN	A1745E	MUT	nCFD
DNMT3A	R882C	MUT	nCFD	SPEN	A2037S	MUT	nCFD
DNMT3A	R882H	MUT	nCFD	SPEN	A2721T	MUT	nCFD

DNMT3A	R882L	MUT	nCFD	SPEN	A970V	MUT	nCFD
DNMT3A	R882P	MUT	nCFD	SPEN	C2567S	MUT	nCFD
DNMT3A	R882S	MUT	nCFD	SPEN	D605Y	MUT	nCFD
DNMT3A	S352N	MUT	CFD	SPEN	G2935W	MUT	nCFD
DNMT3A	S535P	MUT	nCFD	SPEN	G3562R	MUT	CFD
DNMT3A	S714C	MUT	CFD	SPEN	H3638P	MUT	CFD
DNMT3A	S770L	MUT	CFD	SPEN	K1064E	MUT	nCFD
DNMT3A	S770W	MUT	CFD	SPEN	L1091P	MUT	nCFD
DNMT3A	S828N	MUT	nCFD	SPEN	L2990V	MUT	nCFD
DNMT3A	S839Y	MUT	nCFD	SPEN	L440P	MUT	CFD
DNMT3A	V265L	MUT	nCFD	SPEN	N1748T	MUT	nCFD
DNMT3A	V296L	MUT	CFD	SPEN	N2360D	MUT	nCFD
DNMT3A	V339M	MUT	CFD	SPEN	P1810A	MUT	nCFD
DNMT3A	V636M	MUT	CFD	SPEN	P3345S	MUT	nCFD
DNMT3A	V665G	MUT	CFD	SPEN	R187Q	MUT	nCFD
DNMT3A	V704M	MUT	CFD	SPEN	R1902W	MUT	nCFD
DNMT3A	V716I	MUT	CFD	SPEN	R1949W	MUT	nCFD
DNMT3A	V897D	MUT	nCFD	SPEN	R423C	MUT	nCFD
DNMT3A	W409R	MUT	nCFD	SPEN	S2221F	MUT	nCFD
DNMT3A	W581C	MUT	nCFD	SPEN	S260N	MUT	nCFD
DNMT3A	W753G	MUT	CFD	SPEN	A1486T	SNP	nCFD
DNMT3A	W795C	MUT	nCFD	SPEN	A1665V	SNP	nCFD
DNMT3A	W860R	MUT	nCFD	SPEN	A1713S	SNP	nCFD
DNMT3A	Y660F	MUT	CFD	SPEN	A2058P	SNP	nCFD
DNMT3A	Y735C	MUT	CFD	SPEN	A2058T	SNP	nCFD
DNMT3A	Y735S	MUT	CFD	SPEN	A2058V	SNP	nCFD
DNMT3A	E102D	SNP	nCFD	SPEN	A2199S	SNP	nCFD
DNMT3A	E30A	SNP	nCFD	SPEN	A2653T	SNP	nCFD
DNMT3A	F755C	SNP	CFD	SPEN	A 2729 V	SNP	nCFD
DNMT3A	F755S	SNP	CFD	SPEN	A 2745 V	SNP	nCFD
DNMT3A	G172A	SNP	nCFD	SPEN	A 2777 V	SNP	nCFD
DNMT3A	M161L	SNP	nCFD	SPEN	A 2800 V	SNP	nCFD
DNMT3A	M161V	SNP	nCFD	SPEN	A3167D	SNP	nCFD
DNMT3A	N501S	SNP	nCFD	SPEN	D1234N	SNP	nCFD
DNMT3A	P904Q	SNP	nCFD	SPEN	D1363E	SNP	nCFD
DNMT3A	P904R	SNP	nCFD	SPEN	D2007E	SNP	nCFD
DNMT3A	S663L	SNP	CFD	SPEN	D2606E	SNP	nCFD
DNMT3A	S775P	SNP	CFD	SPEN	D303G	SNP	nCFD
DNMT3A	V480G	SNP	nCFD	SPEN	D303V	SNP	nCFD
DNMT3A	V483G	SNP	nCFD	SPEN	E1271A	SNP	nCFD
EP300	A1189V	MUT	CFD	SPEN	E1768K	SNP	nCFD
EP300	A13V	MUT	nCFD	SPEN	E1792K	SNP	nCFD
EP300	A1498T	MUT	CFD	SPEN	E2379K	SNP	nCFD
EP300	A2089G	MUT	CFD	SPEN	E923K	SNP	nCFD
EP300	A2259V	MUT	nCFD	SPEN	G158V	SNP	nCFD
EP300	A2289V	MUT	nCFD	SPEN	G2157V	SNP	nCFD
EP300	A2354V	MUT	nCFD	SPEN	G2294R	SNP	nCFD
EP300	A921T	MUT	nCFD	SPEN	G2294S	SNP	nCFD
EP300	C1164Y	MUT	CFD	SPEN	G3464A	SNP	nCFD
EP300	C1201Y	MUT	nCFD	SPEN	G553S	SNP	CFD
EP300	C1438R	MUT	CFD	SPEN	H1914Y	SNP	nCFD
EP300	C1683Y	MUT	CFD	SPEN	I2469V	SNP	nCFD
EP300	C1790G	MUT	CFD	SPEN	K1609R	SNP	nCFD
EP300	C369F	MUT	CFD	SPEN	K1820R	SNP	nCFD
EP300	C819Y	MUT	nCFD	SPEN	K2971R	SNP	nCFD
EP300	D1625V	MUT	nCFD	SPEN	K909T	SNP	nCFD
EP300	E1263V	MUT	nCFD	SPEN	K943E	SNP	nCFD
EP300	E1536K	MUT	CFD	SPEN	L1091V	SNP	nCFD

EP300	G1368S	MUT	CFD	SPEN	L1136P	SNP	nCFD
EP300	G1382D	MUT	CFD	SPEN	L3512P	SNP	CFD
EP300	G1572R	MUT	CFD	SPEN	L3512Q	SNP	CFD
EP300	G787S	MUT	nCFD	SPEN	L3512R	SNP	CFD
EP300	H1449Q	MUT	CFD	SPEN	L3512V	SNP	CFD
EP300	I1086V	MUT	CFD	SPEN	L808V	SNP	nCFD
EP300	I947T	MUT	nCFD	SPEN	M2169L	SNP	nCFD
EP300	L1360P	MUT	CFD	SPEN	N2593S	SNP	nCFD
EP300	L1639P	MUT	nCFD	SPEN	P1007T	SNP	nCFD
EP300	L2376I	MUT	nCFD	SPEN	P1296A	SNP	nCFD
EP300	L415P	MUT	nCFD	SPEN	P1691S	SNP	nCFD
EP300	L633P	MUT	CFD	SPEN	P1795S	SNP	nCFD
EP300	M104I	MUT	nCFD	SPEN	P2004L	SNP	nCFD
EP300	M2175L	MUT	nCFD	SPEN	P2054T	SNP	nCFD
EP300	M2372V	MUT	nCFD	SPEN	P2067L	SNP	nCFD
EP300	M514I	MUT	nCFD	SPEN	P2158L	SNP	nCFD
EP300	N581H	MUT	CFD	SPEN	P2237A	SNP	nCFD
EP300	P1439Q	MUT	CFD	SPEN	P2238S	SNP	nCFD
EP300	P1879S	MUT	nCFD	SPEN	P2240L	SNP	nCFD
EP300	P250S	MUT	nCFD	SPEN	P2240R	SNP	nCFD
EP300	P300L	MUT	nCFD	SPEN	P2433L	SNP	nCFD
EP300	P481L	MUT	nCFD	SPEN	P2433R	SNP	nCFD
EP300	P481Q	MUT	nCFD	SPEN	P2574L	SNP	nCFD
EP300	P766L	MUT	nCFD	SPEN	P2710S	SNP	nCFD
EP300	P882R	MUT	nCFD	SPEN	P2984S	SNP	nCFD
EP300	P925L	MUT	nCFD	SPEN	P3002L	SNP	nCFD
EP300	P925T	MUT	nCFD	SPEN	P3123S	SNP	nCFD
EP300	Q2195R	MUT	nCFD	SPEN	P3165A	SNP	nCFD
EP300	Q341P	MUT	CFD	SPEN	P3257S	SNP	nCFD
EP300	R1410W	MUT	CFD	SPEN	P3259S	SNP	nCFD
EP300	R1627W	MUT	nCFD	SPEN	P3346S	SNP	nCFD
EP300	R838S	MUT	nCFD	SPEN	P3346T	SNP	nCFD
EP300	S1136P	MUT	CFD	SPEN	P542S	SNP	CFD
EP300	S1212N	MUT	nCFD	SPEN	P771S	SNP	nCFD
EP300	S1220C	MUT	nCFD	SPEN	P876A	SNP	nCFD
EP300	S1534G	MUT	CFD	SPEN	Q2020R	SNP	nCFD
EP300	S255L	MUT	nCFD	SPEN	Q261K	SNP	nCFD
EP300	T132S	MUT	nCFD	SPEN	Q3324R	SNP	nCFD
EP300	T1491S	MUT	CFD	SPEN	Q3493E	SNP	nCFD
EP300	T1669I	MUT	CFD	SPEN	Q822E	SNP	nCFD
EP300	T558A	MUT	nCFD	SPEN	Q918E	SNP	nCFD
EP300	T594M	MUT	CFD	SPEN	R1143C	SNP	nCFD
EP300	T890P	MUT	nCFD	SPEN	R1303S	SNP	nCFD
EP300	V361M	MUT	CFD	SPEN	R1475Q	SNP	nCFD
EP300	Y1414C	MUT	CFD	SPEN	R1959G	SNP	nCFD
EP300	Y1467D	MUT	CFD	SPEN	R1985S	SNP	nCFD
EP300	Y1467H	MUT	CFD	SPEN	R2010H	SNP	nCFD
EP300	Y1467N	MUT	CFD	SPEN	R2043C	SNP	nCFD
EP300	Y1483C	MUT	CFD	SPEN	R235W	SNP	nCFD
EP300	Y638C	MUT	CFD	SPEN	R267G	SNP	nCFD
EP300	A171V	SNP	nCFD	SPEN	R3136C	SNP	nCFD
EP300	A2014V	SNP	CFD	SPEN	R3168G	SNP	nCFD
EP300	A2028V	SNP	CFD	SPEN	R3185Q	SNP	nCFD
EP300	A 2165 V	SNP	nCFD	SPEN	R3312C	SNP	nCFD
EP300	A357P	SNP	CFD	SPEN	R3536W	SNP	CFD
EP300	A922V	SNP	nCFD	SPEN	R637Q	SNP	nCFD
EP300	C1779G	SNP	CFD	SPEN	R75C	SNP	CFD
EP300	E3K	SNP	nCFD	SPEN	R784H	SNP	nCFD

EP300	G2032R	SNP	CFD	SPEN	R807H	SNP	nCFD
EP300	G211S	SNP	nCFD	SPEN	R807P	SNP	nCFD
EP300	G271V	SNP	nCFD	SPEN	R824C	SNP	nCFD
EP300	G324D	SNP	nCFD	SPEN	R871C	SNP	nCFD
EP300	G663V	SNP	nCFD	SPEN	S101G	SNP	nCFD
EP300	H2339N	SNP	nCFD	SPEN	S1189P	SNP	nCFD
EP300	H2339Y	SNP	nCFD	SPEN	S2139T	SNP	nCFD
EP300	H2414Y	SNP	nCFD	SPEN	S2426F	SNP	nCFD
EP300	I1693V	SNP	CFD	SPEN	S2452F	SNP	nCFD
EP300	I196V	SNP	nCFD	SPEN	S2493R	SNP	nCFD
EP300	I429V	SNP	nCFD	SPEN	S2525F	SNP	nCFD
EP300	I725V	SNP	nCFD	SPEN	S2553G	SNP	nCFD
EP300	I859T	SNP	nCFD	SPEN	S260R	SNP	nCFD
EP300	I997V	SNP	nCFD	SPEN	S2841G	SNP	nCFD
EP300	L2406P	SNP	nCFD	SPEN	S3207C	SNP	nCFD
EP300	M126V	SNP	nCFD	SPEN	S3223R	SNP	nCFD
EP300	M2130I	SNP	nCFD	SPEN	S3466G	SNP	nCFD
EP300	M2133T	SNP	nCFD	SPEN	S3492C	SNP	nCFD
EP300	M2161V	SNP	nCFD	SPEN	T1633I	SNP	nCFD
EP300	M2168I	SNP	nCFD	SPEN	T1646S	SNP	nCFD
EP300	M2382T	SNP	nCFD	SPEN	T1662M	SNP	nCFD
EP300	M247V	SNP	nCFD	SPEN	T2983M	SNP	nCFD
EP300	M289V	SNP	nCFD	SPEN	T3204M	SNP	nCFD
EP300	M664T	SNP	nCFD	SPEN	T3558M	SNP	CFD
EP300	M664V	SNP	nCFD	SPEN	T922M	SNP	nCFD
EP300	M693T	SNP	nCFD	SPEN	V1014M	SNP	nCFD
EP300	N182S	SNP	nCFD	SPEN	V1022M	SNP	nCFD
EP300	N2379H	SNP	nCFD	SPEN	V1637A	SNP	nCFD
EP300	N249S	SNP	nCFD	SPEN	V1645L	SNP	nCFD
EP300	N493S	SNP	nCFD	SPEN	V1920I	SNP	nCFD
EP300	P1222H	SNP	nCFD	SPEN	V1924I	SNP	nCFD
EP300	P1855L	SNP	nCFD	SPEN	V2023M	SNP	nCFD
EP300	P1875L	SNP	nCFD	SPEN	V2690M	SNP	nCFD
EP300	P1875S	SNP	nCFD	SPEN	V2704M	SNP	nCFD
EP300	P1875T	SNP	nCFD	SPEN	V2741I	SNP	nCFD
EP300	P1986L	SNP	nCFD	SPEN	V3250A	SNP	nCFD
EP300	P1986Q	SNP	nCFD	SPEN	V3472A	SNP	nCFD
EP300	P1986R	SNP	nCFD	SPEN	V3496A	SNP	nCFD
EP300	P2031S	SNP	CFD	SPEN	V3496M	SNP	nCFD
EP300	P2043Q	SNP	CFD	SPEN	V3527I	SNP	CFD
EP300	P2115L	SNP	nCFD	SPEN	V3569G	SNP	CFD
EP300	P2220R	SNP	nCFD	SPEN	V828A	SNP	nCFD
EP300	P2312S	SNP	nCFD	SPEN	V828I	SNP	nCFD
EP300	P747L	SNP	nCFD	SPEN	Y1297C	SNP	nCFD
EP300	P784L	SNP	nCFD	SPEN	Y3624H	SNP	CFD
EP300	P834T	SNP	nCFD	TET2	A1153E	MUT	nCFD
EP300	P870L	SNP	nCFD	TET2	A1241D	MUT	nCFD
EP300	P886S	SNP	nCFD	TET2	A1355V	MUT	CFD
EP300	P934L	SNP	nCFD	TET2	A1379V	MUT	CFD
EP300	Q1836H	SNP	nCFD	TET2	A1505T	MUT	CFD
EP300	Q190R	SNP	nCFD	TET2	A1505V	MUT	CFD
EP300	Q1990R	SNP	nCFD	TET2	A1863D	MUT	CFD
EP300	Q2223P	SNP	nCFD	TET2	A1863T	MUT	CFD
EP300	Q2241H	SNP	nCFD	TET2	A1876V	MUT	CFD
EP300	Q229H	SNP	nCFD	TET2	A1882P	MUT	CFD
EP300	R1665C	SNP	CFD	TET2	A827T	MUT	nCFD
EP300	R2088W	SNP	CFD	TET2	C1135Y	MUT	nCFD
EP300	R695C	SNP	nCFD	TET2	C1193W	MUT	nCFD

EP300	R705Q	SNP	nCFD	TET2	C1211R	MUT	nCFD
EP300	S106G	SNP	nCFD	TET2	C1211Y	MUT	nCFD
EP300	S1716T	SNP	nCFD	TET2	C1221Y	MUT	nCFD
EP300	S2328P	SNP	nCFD	TET2	C1263R	MUT	nCFD
EP300	S35A	SNP	nCFD	TET2	C1263Y	MUT	nCFD
EP300	S507G	SNP	nCFD	TET2	C1271G	MUT	nCFD
EP300	S545I	SNP	nCFD	TET2	C1271S	MUT	nCFD
EP300	S545N	SNP	nCFD	TET2	C1271W	MUT	nCFD
EP300	S545T	SNP	nCFD	TET2	C1271Y	MUT	nCFD
EP300	S697R	SNP	nCFD	TET2	C1289F	MUT	nCFD
EP300	S719G	SNP	nCFD	TET2	C1289Y	MUT	nCFD
EP300	S916T	SNP	nCFD	TET2	C1298G	MUT	CFD
EP300	S952P	SNP	nCFD	TET2	C1298T	MUT	CFD
EP300	T1282A	SNP	nCFD	TET2	C1298Y	MUT	CFD
EP300	T1851P	SNP	nCFD	TET2	C1358G	MUT	CFD
EP300	T1909A	SNP	nCFD	TET2	C1358R	MUT	CFD
EP300	T1909P	SNP	nCFD	TET2	C1378R	MUT	CFD
EP300	T258A	SNP	nCFD	TET2	C1378Y	MUT	CFD
EP300	T576N	SNP	CFD	TET2	C1875R	MUT	CFD
EP300	T858A	SNP	nCFD	TET2	D1242V	MUT	nCFD
EP300	V520I	SNP	nCFD	TET2	D1376E	MUT	CFD
EP300	Y207H	SNP	nCFD	TET2	D1376N	MUT	CFD
EZH2	A576V	MUT	nCFD	TET2	D1427Y	MUT	CFD
EZH2	A651V	MUT	CFD	TET2	D1730G	MUT	CFD
EZH2	A677G	MUT	CFD	TET2	E1144A	MUT	nCFD
EZH2	A687V	MUT	CFD	TET2	E1207Q	MUT	nCFD
EZH2	C523R	MUT	nCFD	TET2	E1222G	MUT	nCFD
EZH2	C549R	MUT	nCFD	TET2	E1234G	MUT	nCFD
EZH2	C585W	MUT	nCFD	TET2	E1318D	MUT	CFD
EZH2	C601Y	MUT	nCFD	TET2	E1492G	MUT	CFD
EZH2	D188N	MUT	nCFD	TET2	E1492K	MUT	CFD
EZH2	D659A	MUT	CFD	TET2	E1492V	MUT	CFD
EZH2	D659G	MUT	CFD	TET2	E1513Q	MUT	CFD
EZH2	D672H	MUT	CFD	TET2	E1874G	MUT	CFD
EZH2	E125V	MUT	nCFD	TET2	E788K	MUT	nCFD
EZH2	E249K	MUT	nCFD	TET2	E971K	MUT	nCFD
EZH2	F145L	MUT	nCFD	TET2	F1287S	MUT	nCFD
EZH2	F145S	MUT	nCFD	TET2	F1300C	MUT	CFD
EZH2	F665L	MUT	CFD	TET2	F1300I	MUT	CFD
EZH2	F665S	MUT	CFD	TET2	F1368L	MUT	CFD
EZH2	G159R	MUT	nCFD	TET2	F1368Y	MUT	CFD
EZH2	G330R	MUT	nCFD	TET2	F1377I	MUT	CFD
EZH2	G5R	MUT	nCFD	TET2	F1377L	MUT	CFD
EZH2	G643E	MUT	CFD	TET2	F1377S	MUT	CFD
EZH2	G655R	MUT	CFD	TET2	G1172S	MUT	nCFD
EZH2	H279Q	MUT	nCFD	TET2	G1192R	MUT	nCFD
EZH2	H525N	MUT	nCFD	TET2	G1235R	MUT	nCFD
EZH2	H689R	MUT	CFD	TET2	G1256A	MUT	nCFD
EZH2	I146N	MUT	nCFD	TET2	G1256D	MUT	nCFD
EZH2	I264T	MUT	nCFD	TET2	G1275E	MUT	nCFD
EZH2	K199N	MUT	nCFD	TET2	G1275R	MUT	nCFD
EZH2	K629E	MUT	CFD	TET2	G1282D	MUT	nCFD
EZH2	K656E	MUT	CFD	TET2	G1282R	MUT	nCFD
EZH2	L149Q	MUT	nCFD	TET2	G1288D	MUT	nCFD
EZH2	L26P	MUT	nCFD	TET2	G1288S	MUT	nCFD
EZH2	L666V	MUT	CFD	TET2	G1288V	MUT	nCFD
EZH2	L669S	MUT	CFD	TET2	G1361D	MUT	CFD
EZH2	L669V	MUT	CFD	TET2	G1365V	MUT	CFD

EZH2	N670K	MUT	CFD	TET2	G1370R	MUT	CFD
EZH2	N688K	MUT	CFD	TET2	G1370V	MUT	CFD
EZH2	N688T	MUT	CFD	TET2	G1370W	MUT	CFD
EZH2	R288Q	MUT	nCFD	TET2	G1735R	MUT	CFD
EZH2	R382W	MUT	nCFD	TET2	G1861E	MUT	CFD
EZH2	R497Q	MUT	nCFD	TET2	G1913D	MUT	nCFD
EZH2	R556P	MUT	nCFD	TET2	G210D	MUT	nCFD
EZH2	R561L	MUT	nCFD	TET2	G494R	MUT	nCFD
EZH2	R654K	MUT	CFD	TET2	G520S	MUT	nCFD
EZH2	R679C	MUT	CFD	TET2	G773V	MUT	nCFD
EZH2	R679H	MUT	CFD	TET2	H1219Q	MUT	nCFD
EZH2	R685C	MUT	CFD	TET2	H1219R	MUT	nCFD
EZH2	R685H	MUT	CFD	TET2	H1380L	MUT	CFD
EZH2	S380T	MUT	nCFD	TET2	H1380R	MUT	CFD
EZH2	S664G	MUT	CFD	TET2	H1382Y	MUT	CFD
EZH2	S664R	MUT	CFD	TET2	H1792Y	MUT	CFD
EZH2	S690L	MUT	CFD	TET2	H1868Y	MUT	CFD
EZH2	S690P	MUT	CFD	TET2	H1881P	MUT	CFD
EZH2	T261N	MUT	nCFD	TET2	H1881Y	MUT	CFD
EZH2	T568I	MUT	nCFD	TET2	H1904R	MUT	CFD
EZH2	T678I	MUT	CFD	TET2	H434Y	MUT	nCFD
EZH2	V442D	MUT	nCFD	TET2	H937D	MUT	nCFD
EZH2	V621M	MUT	nCFD	TET2	I1175F	MUT	nCFD
EZH2	V674M	MUT	CFD	TET2	I1762V	MUT	CFD
EZH2	W624R	MUT	CFD	TET2	I1871S	MUT	CFD
EZH2	Y153C	MUT	nCFD	TET2	I1873T	MUT	CFD
EZH2	Y641C	MUT	CFD	TET2	K110R	MUT	nCFD
EZH2	Y641F	MUT	CFD	TET2	K1197R	MUT	nCFD
EZH2	Y641H	MUT	CFD	TET2	K1243R	MUT	nCFD
EZH2	Y641N	MUT	CFD	TET2	K1310T	MUT	CFD
EZH2	Y641S	MUT	CFD	TET2	K1491R	MUT	CFD
EZH2	Y726D	MUT	CFD	TET2	K504N	MUT	nCFD
EZH2	Y726N	MUT	CFD	TET2	L103V	MUT	nCFD
EZH2	A482T	SNP	nCFD	TET2	L1210P	MUT	nCFD
EZH2	D185H	SNP	nCFD	TET2	L1229R	MUT	nCFD
EZH2	D202N	SNP	nCFD	TET2	L1231P	MUT	nCFD
EZH2	H129Y	SNP	nCFD	TET2	L1248H	MUT	nCFD
EZH2	I476L	SNP	nCFD	TET2	L1248P	MUT	nCFD
EZH2	I55M	SNP	CFD	TET2	L1322Q	MUT	CFD
EZH2	P347L	SNP	nCFD	TET2	L1322R	MUT	CFD
EZH2	Q250E	SNP	nCFD	TET2	L1329P	MUT	CFD
EZH2	T378I	SNP	nCFD	TET2	L1329R	MUT	CFD
JAK2	A29T	MUT	nCFD	TET2	L1332P	MUT	CFD
JAK2	D544G	MUT	nCFD	TET2	L1340R	MUT	CFD
JAK2	D869G	MUT	CFD	TET2	L1398R	MUT	CFD
JAK2	D873N	MUT	CFD	TET2	L1609M	MUT	CFD
JAK2	E592K	MUT	CFD	TET2	L1801F	MUT	CFD
JAK2	F240L	MUT	nCFD	TET2	L1899P	MUT	CFD
JAK2	G281D	MUT	nCFD	TET2	L307R	MUT	nCFD
JAK2	G571S	MUT	CFD	TET2	L346P	MUT	nCFD
JAK2	G861W	MUT	CFD	TET2	L541P	MUT	nCFD
JAK2	I288V	MUT	nCFD	TET2	L615F	MUT	nCFD
JAK2	I682F	MUT	CFD	TET2	M1164R	MUT	nCFD
JAK2	K1055R	MUT	CFD	TET2	M1907K	MUT	nCFD
JAK2	K539E	MUT	nCFD	TET2	M638V	MUT	nCFD
JAK2	K539L	MUT	nCFD	TET2	N1266H	MUT	nCFD
JAK2	K607N	MUT	CFD	TET2	N1266Y	MUT	nCFD
JAK2	K728E	MUT	CFD	TET2	N1387I	MUT	CFD

JAK2	L224W	MUT	nCFD	TET2	N1387S	MUT	CFD
JAK2	L545S	MUT	CFD	TET2	N1641I	MUT	CFD
JAK2	L579F	MUT	CFD	TET2	N1890S	MUT	CFD
JAK2	L611S	MUT	CFD	TET2	N275S	MUT	nCFD
JAK2	L611V	MUT	CFD	TET2	N312S	MUT	nCFD
JAK2	N1108S	MUT	CFD	TET2	P101H	MUT	nCFD
JAK2	N249K	MUT	nCFD	TET2	P1115H	MUT	nCFD
JAK2	P933R	MUT	CFD	TET2	P1194L	MUT	nCFD
JAK2	R122H	MUT	nCFD	TET2	P1367R	MUT	CFD
JAK2	R487C	MUT	nCFD	TET2	P1419R	MUT	CFD
JAK2	R683G	MUT	CFD	TET2	P174H	MUT	nCFD
JAK2	R683K	MUT	CFD	TET2	P1857S	MUT	CFD
JAK2	R683S	MUT	CFD	TET2	P1889L	MUT	CFD
JAK2	R683T	MUT	CFD	TET2	P1894L	MUT	CFD
JAK2	R715T	MUT	CFD	TET2	P1894T	MUT	CFD
JAK2	R867Q	MUT	CFD	TET2	P1962L	MUT	nCFD
JAK2	R923C	MUT	CFD	TET2	P22L	MUT	nCFD
JAK2	R923H	MUT	CFD	TET2	P874A	MUT	nCFD
JAK2	S367P	MUT	nCFD	TET2	Q108L	MUT	nCFD
JAK2	S398T	MUT	nCFD	TET2	Q1274R	MUT	nCFD
JAK2	S797C	MUT	CFD	TET2	Q1348P	MUT	CFD
JAK2	T108S	MUT	nCFD	TET2	Q548L	MUT	nCFD
JAK2	T875N	MUT	CFD	TET2	R1167M	MUT	nCFD
JAK2	V617F	MUT	CFD	TET2	R1179G	MUT	nCFD
JAK2	C480F	SNP	CFD	TET2	R1214Q	MUT	nCFD
JAK2	D1096E	SNP	CFD	TET2	R1214W	MUT	nCFD
JAK2	D194A	SNP	nCFD	TET2	R1261C	MUT	nCFD
JAK2	D519Y	SNP	nCFD	TET2	R1261H	MUT	nCFD
JAK2	D789E	SNP	CFD	TET2	R1261S	MUT	nCFD
JAK2	E577K	SNP	CFD	TET2	R1262W	MUT	nCFD
JAK2	E846D	SNP	nCFD	TET2	R1359C	MUT	CFD
JAK2	E890K	SNP	CFD	TET2	R1359H	MUT	CFD
JAK2	G294S	SNP	nCFD	TET2	R1383G	MUT	CFD
JAK2	G417S	SNP	CFD	TET2	R1896M	MUT	CFD
JAK2	G48E	SNP	nCFD	TET2	R1896S	MUT	CFD
JAK2	H886R	SNP	CFD	TET2	R2000K	MUT	nCFD
JAK2	I136L	SNP	nCFD	TET2	R814C	MUT	nCFD
JAK2	I19V	SNP	nCFD	TET2	S1190Y	MUT	nCFD
JAK2	I223T	SNP	nCFD	TET2	S1203R	MUT	nCFD
JAK2	I354T	SNP	nCFD	TET2	S1290P	MUT	CFD
JAK2	I899S	SNP	CFD	TET2	S1292R	MUT	CFD
JAK2	K244R	SNP	nCFD	TET2	S1392R	MUT	CFD
JAK2	K253R	SNP	nCFD	TET2	S1563F	MUT	CFD
JAK2	K639R	SNP	CFD	TET2	S1870P	MUT	CFD
JAK2	K883R	SNP	CFD	TET2	S1898F	MUT	CFD
JAK2	L113V	SNP	nCFD	TET2	S282F	MUT	nCFD
JAK2	L393V	SNP	nCFD	TET2	S460F	MUT	nCFD
JAK2	L732S	SNP	CFD	TET2	S521N	MUT	nCFD
JAK2	L830V	SNP	nCFD	TET2	S774T	MUT	nCFD
JAK2	L892V	SNP	CFD	TET2	S826I	MUT	nCFD
JAK2	N337D	SNP	nCFD	TET2	S99T	MUT	nCFD
JAK2	N479K	SNP	CFD	TET2	T1249N	MUT	nCFD
JAK2	N490S	SNP	nCFD	TET2	T1270A	MUT	nCFD
JAK2	P521L	SNP	nCFD	TET2	T1372I	MUT	CFD
JAK2	R1063H	SNP	CFD	TET2	T1393A	MUT	CFD
JAK2	S1115C	SNP	CFD	TET2	T1393I	MUT	CFD
JAK2	S15F	SNP	nCFD	TET2	T1883R	MUT	CFD
JAK2	S797P	SNP	CFD	TET2	T1884A	MUT	CFD

JAK2	V341A	SNP	nCFD	TET2	T1884I	MUT	CFD
JAK2	V392L	SNP	nCFD	TET2	T492S	MUT	nCFD
JAK2	V392M	SNP	nCFD	TET2	V1199I	MUT	nCFD
JAK2	V567I	SNP	CFD	TET2	V1213M	MUT	nCFD
JAK2	W659R	SNP	CFD	TET2	V1417F	MUT	CFD
JAK2	Y201C	SNP	nCFD	TET2	V1718L	MUT	CFD
JAK2	Y435C	SNP	CFD	TET2	V218M	MUT	nCFD
KMT2A	A1560T	MUT	nCFD	TET2	V9I	MUT	nCFD
KMT2A	A3356V	MUT	nCFD	TET2	W1233G	MUT	nCFD
KMT2A	D1396N	MUT	nCFD	TET2	W1291C	MUT	CFD
KMT2A	D1580N	MUT	CFD	TET2	W1291R	MUT	CFD
KMT2A	D2817N	MUT	nCFD	TET2	Y1148H	MUT	nCFD
KMT2A	E1412K	MUT	nCFD	TET2	Y1579S	MUT	CFD
KMT2A	E3013Q	MUT	nCFD	TET2	Y1902H	MUT	CFD
KMT2A	G152D	MUT	nCFD	TET2	Y867H	MUT	nCFD
KMT2A	H3761Q	MUT	nCFD	TET2	A1014S	SNP	nCFD
KMT2A	H468N	MUT	nCFD	TET2	A1769P	SNP	CFD
KMT2A	K1270N	MUT	nCFD	TET2	A1769T	SNP	CFD
KMT2A	K1590R	MUT	CFD	TET2	A308P	SNP	nCFD
KMT2A	K2461N	MUT	nCFD	TET2	A575V	SNP	nCFD
KMT2A	K3738N	MUT	CFD	TET2	A911D	SNP	nCFD
KMT2A	K853Q	MUT	nCFD	TET2	D115E	SNP	nCFD
KMT2A	K895R	MUT	nCFD	TET2	D1788G	SNP	CFD
KMT2A	L905M	MUT	nCFD	TET2	E1513G	SNP	CFD
KMT2A	M2599V	MUT	nCFD	TET2	E1929K	SNP	nCFD
KMT2A	M3931T	MUT	CFD	TET2	F868L	SNP	nCFD
KMT2A	N125T	MUT	nCFD	TET2	G1187S	SNP	nCFD
KMT2A	P1252H	MUT	nCFD	TET2	G355D	SNP	nCFD
KMT2A	P2122S	MUT	nCFD	TET2	G429R	SNP	nCFD
KMT2A	P2462T	MUT	nCFD	TET2	H169R	SNP	nCFD
KMT2A	P2555L	MUT	nCFD	TET2	H1778R	SNP	CFD
KMT2A	P2741A	MUT	nCFD	TET2	H1806R	SNP	CFD
KMT2A	Q2513K	MUT	nCFD	TET2	H1817N	SNP	CFD
KMT2A	Q408L	MUT	nCFD	TET2	H786R	SNP	nCFD
KMT2A	R2376S	MUT	nCFD	TET2	H924R	SNP	nCFD
KMT2A	R3225H	MUT	nCFD	TET2	I1195V	SNP	nCFD
KMT2A	R3819H	MUT	nCFD	TET2	I1762L	SNP	CFD
KMT2A	S2408N	MUT	nCFD	TET2	I1873S	SNP	CFD
KMT2A	S3036Y	MUT	nCFD	TET2	I921V	SNP	nCFD
KMT2A	T3075S	MUT	nCFD	TET2	L103P	SNP	nCFD
KMT2A	V3862I	MUT	CFD	TET2	L1120M	SNP	nCFD
KMT2A	A 2332 V	SNP	nCFD	TET2	L1721W	SNP	CFD
KMT2A	A30G	SNP	nCFD	TET2	L1816F	SNP	CFD
KMT2A	A3299T	SNP	nCFD	TET2	L34F	SNP	nCFD
KMT2A	A3313V	SNP	nCFD	TET2	L567S	SNP	nCFD
KMT2A	A3422V	SNP	nCFD	TET2	M1701I	SNP	CFD
KMT2A	A3440T	SNP	nCFD	TET2	N1567S	SNP	CFD
KMT2A	A3489T	SNP	nCFD	TET2	N1581D	SNP	CFD
KMT2A	A53V	SNP	nCFD	TET2	N1616S	SNP	CFD
KMT2A	C3427G	SNP	nCFD	TET2	N1746H	SNP	CFD
KMT2A	D1251V	SNP	nCFD	TET2	N275K	SNP	nCFD
KMT2A	D3394A	SNP	nCFD	TET2	N767D	SNP	nCFD
KMT2A	E2694D	SNP	nCFD	TET2	P1723S	SNP	CFD
KMT2A	E502K	SNP	nCFD	TET2	P1770L	SNP	CFD
KMT2A	E502Q	SNP	nCFD	TET2	P29R	SNP	nCFD
KMT2A	E919D	SNP	nCFD	TET2	P363L	SNP	nCFD
KMT2A	G1065V	SNP	nCFD	TET2	P472A	SNP	nCFD
KMT2A	G2349S	SNP	nCFD	TET2	P474L	SNP	nCFD

KMT2A	G3128S	SNP	nCFD	TET2	P507R	SNP	nCFD
KMT2A	G3513E	SNP	nCFD	TET2	P555L	SNP	nCFD
KMT2A	G76A	SNP	nCFD	TET2	P761L	SNP	nCFD
KMT2A	H2993R	SNP	nCFD	TET2	Q1084P	SNP	nCFD
KMT2A	I1642V	SNP	nCFD	TET2	Q232R	SNP	nCFD
KMT2A	I3437V	SNP	nCFD	TET2	Q591R	SNP	nCFD
KMT2A	I3569S	SNP	nCFD	TET2	R1095K	SNP	nCFD
KMT2A	K3101E	SNP	nCFD	TET2	R1366H	SNP	CFD
KMT2A	K398R	SNP	nCFD	TET2	R1404Q	SNP	CFD
KMT2A	K860R	SNP	nCFD	TET2	R1572Q	SNP	CFD
KMT2A	L3274F	SNP	nCFD	TET2	R369Q	SNP	nCFD
KMT2A	L3614P	SNP	nCFD	TET2	R369W	SNP	nCFD
KMT2A	L989F	SNP	nCFD	TET2	R5T	SNP	nCFD
KMT2A	M1788I	SNP	nCFD	TET2	S1039L	SNP	nCFD
KMT2A	M1923I	SNP	CFD	TET2	S1205T	SNP	nCFD
KMT2A	M2213V	SNP	nCFD	TET2	S145N	SNP	nCFD
KMT2A	M604V	SNP	nCFD	TET2	S1611Y	SNP	CFD
KMT2A	N1811T	SNP	nCFD	TET2	S602C	SNP	nCFD
KMT2A	N3754S	SNP	nCFD	TET2	S689A	SNP	nCFD
KMT2A	P1354H	SNP	nCFD	TET2	S795R	SNP	nCFD
KMT2A	P1367L	SNP	nCFD	TET2	S890L	SNP	nCFD
KMT2A	P2077L	SNP	nCFD	TET2	V1978M	SNP	nCFD
KMT2A	P2161L	SNP	nCFD	TET2	Y192H	SNP	nCFD
KMT2A	P2170S	SNP	nCFD	TET2	Y559C	SNP	nCFD
KMT2A	P3528A	SNP	nCFD	TP53	C135F	MUT	CFD
KMT2A	P3533S	SNP	nCFD	TP53	C135R	MUT	CFD
KMT2A	P3533T	SNP	nCFD	TP53	C135S	MUT	CFD
KMT2A	P507S	SNP	nCFD	TP53	C135W	MUT	CFD
KMT2A	P562S	SNP	nCFD	TP53	C141G	MUT	CFD
KMT2A	P562T	SNP	nCFD	TP53	C141W	MUT	CFD
KMT2A	Q1761H	SNP	nCFD	TP53	C141Y	MUT	CFD
KMT2A	Q1975P	SNP	CFD	TP53	C176F	MUT	CFD
KMT2A	Q2387R	SNP	nCFD	TP53	C176G	MUT	CFD
KMT2A	Q3083H	SNP	nCFD	TP53	C176S	MUT	CFD
KMT2A	Q3598H	SNP	nCFD	TP53	C176Y	MUT	CFD
KMT2A	R1502Q	SNP	CFD	TP53	C238S	MUT	CFD
KMT2A	R1627Q	SNP	CFD	TP53	C238Y	MUT	CFD
KMT2A	R2188Q	SNP	nCFD	TP53	C242F	MUT	CFD
KMT2A	R2516Q	SNP	nCFD	TP53	C242R	MUT	CFD
KMT2A	R3561W	SNP	nCFD	TP53	C275F	MUT	CFD
KMT2A	S1325N	SNP	nCFD	TP53	C275R	MUT	CFD
KMT2A	S1337L	SNP	nCFD	TP53	C275Y	MUT	CFD
KMT2A	S2319T	SNP	nCFD	TP53	C277F	MUT	CFD
KMT2A	S2432C	SNP	nCFD	TP53	C277S	MUT	CFD
KMT2A	S252I	SNP	nCFD	TP53	D259Y	MUT	CFD
KMT2A	S2831P	SNP	nCFD	TP53	D281E	MUT	CFD
KMT2A	S3107P	SNP	nCFD	TP53	D281N	MUT	CFD
KMT2A	S3172G	SNP	nCFD	TP53	D281Y	MUT	CFD
KMT2A	S3178I	SNP	nCFD	TP53	D48N	MUT	nCFD
KMT2A	S3178N	SNP	nCFD	TP53	E224D	MUT	CFD
KMT2A	S3481Y	SNP	nCFD	TP53	E258D	MUT	CFD
KMT2A	S3659G	SNP	nCFD	TP53	E271K	MUT	CFD
KMT2A	S3702T	SNP	CFD	TP53	E285K	MUT	CFD
KMT2A	S3710A	SNP	CFD	TP53	E286K	MUT	CFD
KMT2A	S487P	SNP	nCFD	TP53	F134C	MUT	CFD
KMT2A	S779L	SNP	nCFD	TP53	F134L	MUT	CFD
KMT2A	S783C	SNP	nCFD	TP53	F134V	MUT	CFD
KMT2A	S830N	SNP	nCFD	TP53	G105V	MUT	CFD

KMT2A	S830T	SNP	nCFD	TP53	G108S	MUT	CFD
KMT2A	S96L	SNP	nCFD	TP53	G187D	MUT	CFD
KMT2A	T1245I	SNP	nCFD	TP53	G187S	MUT	CFD
KMT2A	T2230I	SNP	nCFD	TP53	G199E	MUT	CFD
KMT2A	T3210I	SNP	nCFD	TP53	G244C	MUT	CFD
KMT2A	T3318I	SNP	nCFD	TP53	G244D	MUT	CFD
KMT2A	T3463A	SNP	nCFD	TP53	G244S	MUT	CFD
KMT2A	T993I	SNP	nCFD	TP53	G245C	MUT	CFD
KMT2A	V2310A	SNP	nCFD	TP53	G245D	MUT	CFD
KMT2A	V2772A	SNP	nCFD	TP53	G245S	MUT	CFD
KMT2A	V3198A	SNP	nCFD	TP53	G262R	MUT	CFD
KMT2A	V3714I	SNP	CFD	TP53	G262V	MUT	CFD
KMT2A	V484A	SNP	nCFD	TP53	G266E	MUT	CFD
KMT2A	V484I	SNP	nCFD	TP53	G266V	MUT	CFD
KMT2A	V498I	SNP	nCFD	TP53	H168R	MUT	CFD
KMT2C	A2456T	MUT	nCFD	TP53	H178P	MUT	CFD
KMT2C	A4446T	MUT	CFD	TP53	H179D	MUT	CFD
KMT2C	A803P	MUT	nCFD	TP53	H179L	MUT	CFD
KMT2C	C1114R	MUT	nCFD	TP53	H179Q	MUT	CFD
KMT2C	C4503R	MUT	CFD	TP53	H179Y	MUT	CFD
KMT2C	C4503W	MUT	CFD	TP53	H193L	MUT	CFD
KMT2C	D149V	MUT	nCFD	TP53	H193P	MUT	CFD
KMT2C	D2092V	MUT	nCFD	TP53	H193R	MUT	CFD
KMT2C	D2673G	MUT	nCFD	TP53	H193Y	MUT	CFD
KMT2C	D2713N	MUT	nCFD	TP53	H214R	MUT	CFD
KMT2C	D2714N	MUT	nCFD	TP53	I162N	MUT	CFD
KMT2C	D348N	MUT	nCFD	TP53	I195F	MUT	CFD
KMT2C	D738E	MUT	nCFD	TP53	I195T	MUT	CFD
KMT2C	E1253A	MUT	nCFD	TP53	I232F	MUT	CFD
KMT2C	E2698K	MUT	nCFD	TP53	I251N	MUT	CFD
KMT2C	E2885K	MUT	nCFD	TP53	I255F	MUT	CFD
KMT2C	E4319K	MUT	nCFD	TP53	I332S	MUT	CFD
KMT2C	E864G	MUT	nCFD	TP53	K120E	MUT	CFD
KMT2C	F1753L	MUT	nCFD	TP53	K132E	MUT	CFD
KMT2C	G1624R	MUT	nCFD	TP53	K132Q	MUT	CFD
KMT2C	G1815V	MUT	nCFD	TP53	K139N	MUT	CFD
KMT2C	G2041R	MUT	nCFD	TP53	K164E	MUT	CFD
KMT2C	G315S	MUT	CFD	TP53	L111R	MUT	CFD
KMT2C	G4074S	MUT	nCFD	TP53	L130P	MUT	CFD
KMT2C	G4802V	MUT	CFD	TP53	L130V	MUT	CFD
KMT2C	G639C	MUT	nCFD	TP53	L145R	MUT	CFD
KMT2C	G845E	MUT	nCFD	TP53	L188V	MUT	CFD
KMT2C	G892R	MUT	nCFD	TP53	L194R	MUT	CFD
KMT2C	H290N	MUT	CFD	TP53	L330P	MUT	CFD
KMT2C	H3205Y	MUT	nCFD	TP53	M133R	MUT	CFD
KMT2C	I2756V	MUT	nCFD	TP53	M237I	MUT	CFD
KMT2C	I3590L	MUT	nCFD	TP53	M237L	MUT	CFD
KMT2C	K3889Q	MUT	nCFD	TP53	M243T	MUT	CFD
KMT2C	L224P	MUT	nCFD	TP53	M246I	MUT	CFD
KMT2C	L2387V	MUT	nCFD	TP53	M246K	MUT	CFD
KMT2C	L3116P	MUT	nCFD	TP53	M246L	MUT	CFD
KMT2C	L901P	MUT	nCFD	TP53	M246R	MUT	CFD
KMT2C	M1974I	MUT	nCFD	TP53	M246V	MUT	CFD
KMT2C	M2304V	MUT	nCFD	TP53	N235S	MUT	CFD
KMT2C	M796V	MUT	nCFD	TP53	N239D	MUT	CFD
KMT2C	N1563D	MUT	nCFD	TP53	N239T	MUT	CFD
KMT2C	N2088I	MUT	nCFD	TP53	N345I	MUT	CFD
KMT2C	N2106I	MUT	nCFD	TP53	P152L	MUT	CFD

KMT2C	N2830H	MUT	nCFD	TP53	P278L	MUT	CFD
KMT2C	N3347S	MUT	nCFD	TP53	P278R	MUT	CFD
KMT2C	P1080L	MUT	nCFD	TP53	P58Q	MUT	nCFD
KMT2C	P1544S	MUT	nCFD	TP53	P82L	MUT	nCFD
KMT2C	P157L	MUT	nCFD	TP53	Q136H	MUT	CFD
KMT2C	P1606L	MUT	nCFD	TP53	R110L	MUT	CFD
KMT2C	P2012S	MUT	nCFD	TP53	R158H	MUT	CFD
KMT2C	P2050S	MUT	nCFD	TP53	R175G	MUT	CFD
KMT2C	P2278L	MUT	nCFD	TP53	R175H	MUT	CFD
KMT2C	P2278S	MUT	nCFD	TP53	R181H	MUT	CFD
KMT2C	P2450S	MUT	nCFD	TP53	R181P	MUT	CFD
KMT2C	P2616S	MUT	nCFD	TP53	R181S	MUT	CFD
KMT2C	P309S	MUT	CFD	TP53	R196P	MUT	CFD
KMT2C	P3452L	MUT	nCFD	TP53	R213Q	MUT	CFD
KMT2C	P3513L	MUT	nCFD	TP53	R248L	MUT	CFD
KMT2C	P3583L	MUT	nCFD	TP53	R248W	MUT	CFD
KMT2C	P837T	MUT	nCFD	TP53	R249M	MUT	CFD
KMT2C	Q2680H	MUT	nCFD	TP53	R249S	MUT	CFD
KMT2C	Q3792K	MUT	nCFD	TP53	R267Q	MUT	CFD
KMT2C	Q588H	MUT	nCFD	TP53	R273C	MUT	CFD
KMT2C	Q608R	MUT	nCFD	TP53	R273G	MUT	CFD
KMT2C	R164K	MUT	nCFD	TP53	R273H	MUT	CFD
KMT2C	R2388C	MUT	nCFD	TP53	R273S	MUT	CFD
KMT2C	R254C	MUT	CFD	TP53	R280G	MUT	CFD
KMT2C	R2610Q	MUT	nCFD	TP53	R280T	MUT	CFD
KMT2C	R3177H	MUT	nCFD	TP53	R282G	MUT	CFD
KMT2C	R3400H	MUT	nCFD	TP53	R282Q	MUT	CFD
KMT2C	R3403H	MUT	nCFD	TP53	R282W	MUT	CFD
KMT2C	R380P	MUT	nCFD	TP53	R283C	MUT	CFD
KMT2C	R3960Q	MUT	nCFD	TP53	R290H	MUT	nCFD
KMT2C	R4584Q	MUT	CFD	TP53	R333C	MUT	CFD
KMT2C	R4822H	MUT	CFD	TP53	R337C	MUT	CFD
KMT2C	R4907Q	MUT	nCFD	TP53	S127P	MUT	CFD
KMT2C	R894W	MUT	nCFD	TP53	S215R	MUT	CFD
KMT2C	S1307A	MUT	nCFD	TP53	S240G	MUT	CFD
KMT2C	S2095G	MUT	nCFD	TP53	S241A	MUT	CFD
KMT2C	S2095I	MUT	nCFD	TP53	S241C	MUT	CFD
KMT2C	S2508F	MUT	nCFD	TP53	S241P	MUT	CFD
KMT2C	S2869T	MUT	nCFD	TP53	S241T	MUT	CFD
KMT2C	S3588L	MUT	nCFD	TP53	S261T	MUT	CFD
KMT2C	S4190T	MUT	nCFD	TP53	S46F	MUT	nCFD
KMT2C	S730Y	MUT	nCFD	TP53	S99F	MUT	CFD
KMT2C	S990G	MUT	nCFD	TP53	T118I	MUT	CFD
KMT2C	T2100I	MUT	nCFD	TP53	T125R	MUT	CFD
KMT2C	T3498I	MUT	nCFD	TP53	T150A	MUT	CFD
KMT2C	T820I	MUT	nCFD	TP53	T155N	MUT	CFD
KMT2C	V2322A	MUT	nCFD	TP53	T18A	MUT	CFD
KMT2C	V3661M	MUT	nCFD	TP53	T377P	MUT	nCFD
KMT2C	V4204I	MUT	nCFD	TP53	V143M	MUT	CFD
KMT2C	V655I	MUT	nCFD	TP53	V147G	MUT	CFD
KMT2C	V920L	MUT	nCFD	TP53	V157F	MUT	CFD
KMT2C	Y2094F	MUT	nCFD	TP53	V157G	MUT	CFD
KMT2C	Y2145C	MUT	nCFD	TP53	V172D	MUT	CFD
KMT2C	A1685S	SNP	nCFD	TP53	V173L	MUT	CFD
KMT2C	A1685T	SNP	nCFD	TP53	V197E	MUT	CFD
KMT2C	A2223T	SNP	nCFD	TP53	V197G	MUT	CFD
KMT2C	A241G	SNP	nCFD	TP53	V216M	MUT	CFD
KMT2C	A3616V	SNP	nCFD	TP53	V272M	MUT	CFD

KMT2C	A3723P	SNP	nCFD	TP53	V274L	MUT	CFD
KMT2C	A3748T	SNP	nCFD	TP53	W23C	MUT	CFD
KMT2C	A3921V	SNP	nCFD	TP53	Y107D	MUT	CFD
KMT2C	A3930D	SNP	nCFD	TP53	Y126C	MUT	CFD
KMT2C	A3930V	SNP	nCFD	TP53	Y126D	MUT	CFD
KMT2C	A4252G	SNP	nCFD	TP53	Y163C	MUT	CFD
KMT2C	A 4252 V	SNP	nCFD	TP53	Y163D	MUT	CFD
KMT2C	A4709S	SNP	nCFD	TP53	Y205H	MUT	CFD
KMT2C	A846V	SNP	nCFD	TP53	Y205N	MUT	CFD
KMT2C	C1953S	SNP	nCFD	TP53	Y220C	MUT	CFD
KMT2C	C394Y	SNP	CFD	TP53	Y220H	MUT	CFD
KMT2C	D1319H	SNP	nCFD	TP53	Y234C	MUT	CFD
KMT2C	D1450V	SNP	nCFD	TP53	Y234H	MUT	CFD
KMT2C	D1800E	SNP	nCFD	TP53	Y234N	MUT	CFD
KMT2C	D2092G	SNP	nCFD	TP53	Y236C	MUT	CFD
KMT2C	D2461N	SNP	nCFD	TP53	Y236H	MUT	CFD
KMT2C	D3264G	SNP	nCFD	TP53	Y236N	MUT	CFD
KMT2C	D3841V	SNP	nCFD	TP53	E339K	SNP	CFD
KMT2C	D3990N	SNP	nCFD	TP53	E339Q	SNP	CFD
KMT2C	D4393N	SNP	nCFD	TP53	G262C	SNP	CFD
KMT2C	D4790H	SNP	CFD	TP53	G262S	SNP	CFD
KMT2C	D525A	SNP	nCFD	TP53	N263D	SNP	CFD
KMT2C	D525G	SNP	nCFD	TP53	P47S	SNP	nCFD
KMT2C	D599Y	SNP	nCFD	TP53	P47T	SNP	nCFD
KMT2C	D958H	SNP	nCFD	TP53	P72H	SNP	nCFD
KMT2C	E2656K	SNP	nCFD	TP53	P72R	SNP	nCFD
KMT2C	E2834D	SNP	nCFD	TP53	R110H	SNP	CFD
KMT2C	E3872K	SNP	nCFD	TP53	R110P	SNP	CFD
KMT2C	E672D	SNP	nCFD	TP53	R175C	SNP	CFD
KMT2C	E765G	SNP	nCFD	TP53	R333H	SNP	CFD
KMT2C	F2482S	SNP	nCFD	TP53	S366A	SNP	nCFD
KMT2C	F3171L	SNP	nCFD	TP53	V10I	SNP	CFD
KMT2C	F3831C	SNP	nCFD	TP53	V10L	SNP	CFD
KMT2C	F835L	SNP	nCFD	TP53	V217M	SNP	CFD
KMT2C	G1789A	SNP	nCFD	TP53	V31F	SNP	nCFD
KMT2C	G1789C	SNP	nCFD	TP53	V31I	SNP	nCFD
KMT2C	G1789V	SNP	nCFD				

Abbreviations in the table: AAS - Amino Acid Substitution, CFD - Conserved Functional Domain, nCFD - not Conserved Functional Domain

Supplementary Table 2. Features selected using Naïve Bayes machine learning algorithm for each gene (GSM approach) in the variant dataset.

Gene	Selected features AAIndex ID	Selected features- Description
ARID1A	CHAM830108 FASG760104 FAUJ880105 FAUJ880108 GEIM800103 MAXF760104	A parameter of charge transfer donor capability (Charton-Charton, 1983) pK-N (Fasman, 1976)
	QIAN880103	STERIMOL minimum width of the side chain (Fauchere et al., 1988) Localized electrical effect (Fauchere et al., 1988) Alpha-helix indices for beta-proteins (Geisow-Roberts, 1980) Normalized frequency of left-handed alpha-helix (Maxfield-Scheraga, 1976) Weights for alpha-helix at the window position of -4 (Qian-Sejnowski, QIAN880113
1988) Weights for alpha-helix at the window position of 6 (Qian-Sejnowski,		

	WILM950103 ENGD860101 KARS160118 KARS160121	(Wilce et al. 1995) Hydrophobicity coefficient in RP-HPLC, C4 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995) Hydrophobicity index (Engelman et al., 1986) Average weighted atomic number or degree based on atomic number in the graph (Karkbara-Knisley, 2016) Weighted average eigenvalue based on the atomic numbers (KarkbaraKnisley, 2016)
ATM	BHAR880101 BURA740102 CHAM830103	Average flexibility indices (Bhaskaran-Ponnuswamy, 1988) Normalized frequency of extended structure (Burgess et al., 1974) The number of atoms in the side chain labelled $1+1$ (Charton-Charton, 1983)
	CHAM830107	A parameter of charge transfer capability (Charton-Charton, 1983)
	CHOC760102	Residue accessible surface area in folded protein (Chothia, 1976)
	CHOC760103	Proportion of residues 95\% buried (Chothia, 1976)
	CHOP780209	Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b)
	CHOP780211	Normalized frequency of C-terminal non beta region (Chou-Fasman, 1978b)
	CHOP780215	Frequency of the 4th residue in turn (Chou-Fasman, 1978b)
	CIDH920102	Normalized hydrophobicity scales for beta-proteins (Cid et al., 1992)
	DESM900101	Membrane preference for cytochrome b: MPH89 (Degli Esposti et al., 1990)
	FASG760103	Optical rotation (Fasman, 1976)
	FAUJ880111	Positive charge (Fauchere et al., 1988)
	FAUJ880112	Negative charge (Fauchere et al., 1988)
	FINA910101	Helix initiation parameter at posision i-1 (Finkelstein et al., 1991)
	GEIM800101	Alpha-helix indices (Geisow-Roberts, 1980)
	GRAR740103	Volume (Grantham, 1974)
	ISOY800103	Normalized relative frequency of bend (Isogai et al., 1980)
	ISOY800105	Normalized relative frequency of bend S (Isogai et al., 1980)
	ISOY800106	Normalized relative frequency of helix end (Isogai et al., 1980)
	JANJ790101	Ratio of buried and accessible molar fractions (Janin, 1979)
	KANM800101	Average relative probability of helix (Kanehisa-Tsong, 1980)
	KRIW790103	Side chain volume (Krigbaum-Komoriya, 1979)
	KYTJ820101	Hydropathy index (Kyte-Doolittle, 1982)
	MAXF760105	Normalized frequency of zeta L (Maxfield-Scheraga, 1976)
	MAXF760106	Normalized frequency of alpha region (Maxfield-Scheraga, 1976)
	MEEJ800101	Retention coefficient in HPLC, pH7.4 (Meek, 1980)
	MEEJ810102	Retention coefficient in NaH2PO4 (Meek-Rossetti, 1981)
	MEIH800102	Average reduced distance for side chain (Meirovitch et al., 1980)
	NAGK730101	Normalized frequency of alpha-helix (Nagano, 1973)
	NAGK730103	Normalized frequency of coil (Nagano, 1973)
	NAKH900104	Normalized composition of mt-proteins (Nakashima et al., 1990)
	NAKH900106	Normalized composition from animal (Nakashima et al., 1990)
	NAKH900108	Normalized composition from fungi and plant (Nakashima et al., 1990)
	NAKH900111	Transmembrane regions of non-mt-proteins (Nakashima et al., 1990)
	NAKH920102	AA composition of CYT2 of single-spanning proteins (NakashimaNishikawa, 1992)
	NAKH920104	AA composition of EXT2 of single-spanning proteins (NakashimaNishikawa, 1992)
	NAKH920107	AA composition of EXT of multi-spanning proteins (NakashimaNishikawa, 1992)
	NAKH920108	AA composition of MEM of multi-spanning proteins (NakashimaNishikawa, 1992)
	OOBM770104	Average non-bonded energy per residue (Oobatake-Ooi, 1977)
	OOBM850102	Optimized propensity to form reverse turn (Oobatake et al., 1985)
	PONP800102	Average gain in surrounding hydrophobicity (Ponnuswamy et al., 1980)
	PONP800103	Average gain ratio in surrounding hydrophobicity (Ponnuswamy et al., 1980)
	PONP800106	Surrounding hydrophobicity in turn (Ponnuswamy et al., 1980)

PRAM820103

QIAN880108

QIAN880119
QIAN880125
QIAN880132
RACS770102
RACS820101
RACS820111
RADA880103
RADA880105
RADA880106
RADA880107
RICJ880103
RICJ880111
RICJ880114
RICJ880116
ROBB760102
ROBB760111
ROSM880103
SNEP660103
SNEP660104
SWER830101
TANS770103
TANS770105
TANS770109
VASM830103
WARP780101
WEBA780101
WERD780103
WOLS870101
WOLS870103
YUTK870103
YUTK870104
ZASB820101
AURR980101
AURR980104
AURR980106
AURR980110
VINM940102
MUNV940105
WIMW960101
MONM990101
BLAM930101
PARS000101

NADH010107

Correlation coefficient in regression analysis (Prabhakaran-Ponnuswamy, 1982)

Weights for alpha-helix at the window position of 1 (Qian-Sejnowski, 1988)

Weights for beta-sheet at the window position of -1 (Qian-Sejnowski, 1988)

Weights for beta-sheet at the window position of 5 (Qian-Sejnowski, 1988)

Weights for coil at the window position of -1 (Qian-Sejnowski, 1988)
Average reduced distance for side chain (Rackovsky-Scheraga, 1977)
Average relative fractional occurrence in A0(i) (Rackovsky-Scheraga, 1982)

Average relative fractional occurrence in E0(i-1) (Rackovsky-Scheraga, 1982)

Transfer free energy from vap to chx (Radzicka-Wolfenden, 1988)
Transfer free energy from vap to oct (Radzicka-Wolfenden, 1988)
Accessible surface area (Radzicka-Wolfenden, 1988)
Energy transfer from out to in(95\%buried) (Radzicka-Wolfenden, 1988)
Relative preference value at N -cap (Richardson-Richardson, 1988)
Relative preference value at C4 (Richardson-Richardson, 1988)
Relative preference value at C1 (Richardson-Richardson, 1988)
Relative preference value at C' (Richardson-Richardson, 1988)
Information measure for N-terminal helix (Robson-Suzuki, 1976)
Information measure for C-terminal turn (Robson-Suzuki, 1976)
Loss of Side chain hydropathy by helix formation (Roseman, 1988)
Principal component III (Sneath, 1966)
Principal component IV (Sneath, 1966)
Optimal matching hydrophobicity (Sweet-Eisenberg, 1983)
Normalized frequency of extended structure (Tanaka-Scheraga, 1977)
Normalized frequency of chain reversal S (Tanaka-Scheraga, 1977)
Normalized frequency of coil (Tanaka-Scheraga, 1977)
Relative population of conformational state E (Vasquez et al., 1983)
Average interactions per side chain atom (Warme-Morgan, 1978)
RF value in high salt chromatography (Weber-Lacey, 1978)
Free energy change of alpha(Ri) to alpha(Rh) (Wertz-Scheraga, 1978)
Principal property value z1 (Wold et al., 1987)
Principal property value z3 (Wold et al., 1987)
Activation Gibbs energy of unfolding, pH7.0 (Yutani et al., 1987)
Activation Gibbs energy of unfolding, pH9.0 (Yutani et al., 1987)
Dependence of partition coefficient on ionic strength (Zaslavsky et al., 1982)

Normalized positional residue frequency at helix termini N4'(AuroraRose, 1998)
Normalized positional residue frequency at helix termini N^{\prime} (Aurora-Rose, 1998)

Normalized positional residue frequency at helix termini N1 (AuroraRose, 1998)
Normalized positional residue frequency at helix termini N5 (AuroraRose, 1998)
Normalized flexibility parameters (B-values) for each residue surrounded by none rigid neighbours (Vihinen et al., 1994)
Free energy in beta-strand region (Munoz-Serrano, 1994)
Free energies of transfer of AcWl-X-LL peptides from bilayer interface to water (Wimley-White, 1996)
Turn propensity scale for transmembrane helices (Monne et al., 1999)
Alpha helix propensity of position 44 in T4 lysozyme (Blaber et al., 1993)
p-Values of mesophilic proteins based on the distributions of B values (Parthasarathy-Murthy, 2000)
Hydropathy scale based on self-information values in the two-state model (50\% accessibility) (Naderi-Manesh et al., 2001)

	MONM990201 CEDJ970104 FUKS010108 MITS020101 WILM950101 WILM950102 GUOD860101 JURD980101 BASU050102 GEOR030101 GEOR030104 GEOR030107 DIGM050101 WOLR790101 OLSK800101 CORJ870102 KARS160103 KARS160109 KARS160112	Averaged turn propensities in a transmembrane helix (Monne et al., 1999) Composition of amino acids in intracellular proteins (percent) (Cedano et al., 1997) Interior composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001) Amphiphilicity index (Mitaku et al., 2002) Hydrophobicity coefficient in RP-HPLC, C18 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995) Hydrophobicity coefficient in RP-HPLC, C8 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995) Retention coefficient at pH 2 (Guo et al., 1986) Modified Kyte-Doolittle hydrophobicity scale (Juretic et al., 1998) Interactivity scale obtained by maximizing the mean of correlation coefficient over single-domain globular proteins (Bastolla et al., 2005) Linker propensity from all dataset (George-Heringa, 2003) Linker propensity from 3-linker dataset (George-Heringa, 2003) Linker propensity from long dataset (linker length is greater than 14 residues) (George-Heringa, 2003) Hydrostatic pressure asymmetry index, PAI (Di Giulio, 2005) Hydrophobicity index (Wolfenden et al., 1979) Average internal preferences (Olsen, 1980) SWEIG index (Cornette et al., 1987) Total weighted degree of the graph (obtained by adding all the weights of all the vertices) (Karkbara-Knisley, 2016) Maximum eigenvalue of the weighted Laplacian matrix of the graph (Karkbara-Knisley, 2016) Second smallest eigenvalue of the Laplacian matrix of the graph (Karkbara-Knisley, 2016)
ATRX	ANDN920101 ARGP820102 ARGP820103 BULH740102 BUNA790101 BUNA790103 CHAM820102 CHAM830103 CHOC760102 CHOC760103 CHOP780202 CHOP780205 CHOP780208 CHOP780209 CHOP780211 CHOP780213 CHOP780216 COHE430101 FAUJ880109 FAUJ880113 FINA910104 GEIM800111 GRAR740101 ISOY800107 JANJ790102 KARP850101 KLEP840101 LEVM760107 LEVM780103	alpha-CH chemical shifts (Andersen et al., 1992) Signal sequence helical potential (Argos et al., 1982) Membrane-buried preference parameters (Argos et al., 1982) Apparent partial specific volume (Bull-Breese, 1974) alpha-NH chemical shifts (Bundi-Wuthrich, 1979) Spin-spin coupling constants 3JHalpha-NH (Bundi-Wuthrich, 1979) Free energy of solution in water, kcal/mole (Charton-Charton, 1982) The number of atoms in the side chain labelled $1+1$ (Charton-Charton, 1983) Residue accessible surface area in folded protein (Chothia, 1976) Proportion of residues 95% buried (Chothia, 1976) Normalized frequency of beta-sheet (Chou-Fasman, 1978b) Normalized frequency of C-terminal helix (Chou-Fasman, 1978b) Normalized frequency of N-terminal beta-sheet (Chou-Fasman, 1978b) Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b) Normalized frequency of C-terminal non beta region (Chou-Fasman, 1978b) Frequency of the 2nd residue in turn (Chou-Fasman, 1978b) Normalized frequency of the 2 nd and 3rd residues in turn (Chou-Fasman, 1978b) Partial specific volume (Cohn-Edsall, 1943) Number of hydrogen bond donors (Fauchere et al., 1988) $\mathrm{pK}-\mathrm{a}(\mathrm{RCOOH})$ (Fauchere et al., 1988) Helix termination parameter at posision $\mathrm{j}+1$ (Finkelstein et al., 1991) Aperiodic indices for alpha/beta-proteins (Geisow-Roberts, 1980) Composition (Grantham, 1974) Normalized relative frequency of double bend (Isogai et al., 1980) Transfer free energy (Janin, 1979) Flexibility parameter for no rigid neighbors (Karplus-Schulz, 1985) Net charge (Klein et al., 1984) van der Waals parameter epsilon (Levitt, 1976) Normalized frequency of reverse turn, with weights (Levitt, 1978)

LEVM780104
LEVM780106

MAXF760104

MAXF760106
MCMT640101
MEEJ800101
NAGK730101
NAKH900104
NAKH900106
NAKH900108
NAKH900111
NAKH920101
NAKH920102

OOBM850102
OOBM850104
PALJ810114
PALJ810116
PRAM820101
PRAM900104
PTIO830101
QIAN880101
QIAN880103
QIAN880109
QIAN880110
QIAN880111
QIAN880124
QIAN880125
QIAN880128
QIAN880133
QIAN880135
QIAN880136
QIAN880139
RACS820106

RACS820110
RADA880107
RICJ880105
RICJ880109
RICJ880110
ROBB760104
ROBB760106
ROBB760107
SUEM840101
TANS770102
TANS770104
TANS770108
WERD780104
YUTK870102
ZASB820101

Normalized frequency of alpha-helix, unweighted (Levitt, 1978)
Normalized frequency of reverse turn, unweighted (Levitt, 1978)
Normalized frequency of left-handed alpha-helix (Maxfield-Scheraga, 1976)

Normalized frequency of alpha region (Maxfield-Scheraga, 1976)
Refractivity (McMeekin et al., 1964), Cited by Jones (1975)
Retention coefficient in HPLC, pH7.4 (Meek, 1980)
Normalized frequency of alpha-helix (Nagano, 1973)
Normalized composition of mt-proteins (Nakashima et al., 1990)
Normalized composition from animal (Nakashima et al., 1990)
Normalized composition from fungi and plant (Nakashima et al., 1990)
Transmembrane regions of non-mt-proteins (Nakashima et al., 1990)
AA composition of CYT of single-spanning proteins (NakashimaNishikawa, 1992)
AA composition of CYT2 of single-spanning proteins (NakashimaNishikawa, 1992)
Optimized propensity to form reverse turn (Oobatake et al., 1985)
Optimized average non-bonded energy per atom (Oobatake et al., 1985)
Normalized frequency of turn in all-beta class (Palau et al., 1981)
Normalized frequency of turn in alpha/beta class (Palau et al., 1981)
Intercept in regression analysis (Prabhakaran-Ponnuswamy, 1982)
Relative frequency in reverse-turn (Prabhakaran, 1990)
Helix-coil equilibrium constant (Ptitsyn-Finkelstein, 1983)
Weights for alpha-helix at the window position of -6 (Qian-Sejnowski, 1988)

Weights for alpha-helix at the window position of -4 (Qian-Sejnowski, 1988)

Weights for alpha-helix at the window position of 2 (Qian-Sejnowski, 1988)

Weights for alpha-helix at the window position of 3 (Qian-Sejnowski, 1988)

Weights for alpha-helix at the window position of 4 (Qian-Sejnowski, 1988)

Weights for beta-sheet at the window position of 4 (Qian-Sejnowski, 1988)

Weights for beta-sheet at the window position of 5 (Qian-Sejnowski, 1988)

Weights for coil at the window position of -5 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 0 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 2 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 3 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 6 (Qian-Sejnowski, 1988)
Average relative fractional occurrence in ER(i) (Rackovsky-Scheraga, 1982)

Average relative fractional occurrence in EL(i-1) (Rackovsky-Scheraga, 1982)

Energy transfer from out to in(95\%buried) (Radzicka-Wolfenden, 1988)
Relative preference value at N2 (Richardson-Richardson, 1988)
Relative preference value at Mid (Richardson-Richardson, 1988)
Relative preference value at C5 (Richardson-Richardson, 1988)
Information measure for C-terminal helix (Robson-Suzuki, 1976)
Information measure for pleated-sheet (Robson-Suzuki, 1976)
Information measure for extended without H-bond (Robson-Suzuki, 1976)
Zimm-Bragg parameter s at 20 C (Sueki et al., 1984)
Normalized frequency of isolated helix (Tanaka-Scheraga, 1977)
Normalized frequency of chain reversal R (Tanaka-Scheraga, 1977)
Normalized frequency of zeta R (Tanaka-Scheraga, 1977)
Free energy change of epsilon(i) to alpha(Rh) (Wertz-Scheraga, 1978)
Unfolding Gibbs energy in water, pH9.0 (Yutani et al., 1987)
Dependence of partition coefficient on ionic strength (Zaslavsky et al.,

	ZIMJ680104 ZIMJ680105 AURR980101 AURR980104 AURR980106 AURR980107 AURR980109 AURR980118 MUNV940101 KUMS000103 FODM020101 NADH010101 NADH010106 KOEP990101 KOEP990102 FUKS010111 SUYM030101 PUNT030102 GEOR030105 GEOR030109 OLSK800101 GUYH850104 GUYH850105 KARS160120	1982) Isoelectric point (Zimmerman et al., 1968) RF rank (Zimmerman et al., 1968) Normalized positional residue frequency at helix termini N4'(Aurora- Rose, 1998) Normalized positional residue frequency at helix termini N^{\prime} (Aurora-Rose, 1998) Normalized positional residue frequency at helix termini N1 (Aurora- Rose, 1998) Normalized positional residue frequency at helix termini N2 (AuroraRose, 1998) Normalized positional residue frequency at helix termini N4 (AuroraRose, 1998) Normalized positional residue frequency at helix termini C" (AuroraRose, 1998) Free energy in alpha-helical conformation (Munoz-Serrano, 1994) Distribution of amino acid residues in the alpha-helices in thermophilic proteins (Kumar et al., 2000) Propensity of amino acids within pi-helices (Fodje-Al-Karadaghi, 2002) Hydropathy scale based on self-information values in the two-state model (5\% accessibility) (Naderi-Manesh et al., 2001 Hydropathy scale based on self-information values in the two-state model (36\% accessibility) (Naderi-Manesh et al., 2001) Alpha-helix propensity derived from designed sequences (Koehl-Levitt, 1999) Beta-sheet propensity derived from designed sequences (Koehl-Levitt, 1999) Entire chain composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001) Linker propensity index (Suyama-Ohara, 2003) Knowledge-based membrane-propensity scale from 3D_Helix in MPtopo databases (Punta-Maritan, 2003) Linker propensity from small dataset (linker length is less than six residues) (George-Heringa, 2003) Linker propensity from non-helical (annotated by DSSP) dataset (GeorgeHeringa, 2003) Average internal preferences (Olsen, 1980) Apparent partition energies calculated from Janin index (Guy, 1985) Apparent partition energies calculated from Chothia index (Guy, 1985) Weighted minimum eigenvalue based on the atomic numbers (Karkbara- Knisley, 2016)
BCOR	ARGP820101 ARGP820102 BIOV880101 CHAM830102 GEIM800107 JANJ790101 JOND750101 LEVM780102 MAXF760103 NAKH900102 NAKH920102 NAKH920108 OOBM770103 PALJ810103 PALJ810111	Hydrophobicity index (Argos et al., 1982) Signal sequence helical potential (Argos et al., 1982) Information value for accessibility; average fraction 35\% (Biou et al., 1988) A parameter defined from the residuals obtained from the best correlation of the Chou-Fasman parameter of beta-sheet (Charton-Charton, 1983) Beta-strand indices for alpha/beta-proteins (Geisow-Roberts, 1980) Ratio of buried and accessible molar fractions (Janin, 1979) Hydrophobicity (Jones, 1975) Normalized frequency of beta-sheet, with weights (Levitt, 1978) Normalized frequency of zeta R (Maxfield-Scheraga, 1976) SD of AA composition of total proteins (Nakashima et al., 1990) AA composition of CYT2 of single-spanning proteins (NakashimaNishikawa, 1992) AA composition of MEM of multi-spanning proteins (NakashimaNishikawa, 1992) Long range non-bonded energy per atom (Oobatake-Ooi, 1977) Normalized frequency of beta-sheet from LG (Palau et al., 1981) Normalized frequency of beta-sheet in alpha+beta class (Palau et al.,

	WILM950104 KARS160120	mesophiles (percent) (Fukuchi-Nishikawa, 2001) Hydrophobicity coefficient in RP-HPLC, C18 with 0.1\%TFA/2$\mathrm{PrOH} / \mathrm{MeCN} / \mathrm{H} 2 \mathrm{O}$ (Wilce et al. 1995) Weighted minimum eigenvalue based on the atomic numbers (KarkbaraKnisley, 2016)
EP300	BEGF750102	Conformational parameter of beta-structure (Beghin-Dirkx, 1975)
	CHAM830103	The number of atoms in the side chain labelled $1+1$ (Charton-Charton, 1983)
	DAYM780201	Relative mutability (Dayhoff et al., 1978b)
	FAUJ880112	Negative charge (Fauchere et al., 1988)
	GEIM800105	Beta-strand indices (Geisow-Roberts, 1980)
	JANJ790101	Ratio of buried and accessible molar fractions (Janin, 1979)
	PALJ810115	Normalized frequency of turn in alpha+beta class (Palau et al., 1981)
	SNEP660103	Principal component III (Sneath, 1966)
	NADH010106	Hydropathy scale based on self-information values in the two-state model (36\% accessibility) (Naderi-Manesh et al., 2001)
	NADH010107	Hydropathy scale based on self-information values in the two-state model (50\% accessibility) (Naderi-Manesh et al., 2001)
	WILM950102	Hydrophobicity coefficient in RP-HPLC, C8 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995)
	WILM950104	Hydrophobicity coefficient in RP-HPLC, C18 with 0.1\%TFA/2$\mathrm{PrOH} / \mathrm{MeCN} / \mathrm{H} 2 \mathrm{O}$ (Wilce et al. 1995)
	GEOR030104	Linker propensity from 3-linker dataset (George-Heringa, 2003)
	GEOR030105	Linker propensity from small dataset (linker length is less than six residues) (George-Heringa, 2003)
	OLSK800101	Average internal preferences (Olsen, 1980)
	KARS160109	Maximum eigenvalue of the weighted Laplacian matrix of the graph (Karkbara-Knisley, 2016)
EZH2	GOLD730101	Hydrophobicity factor (Goldsack-Chalifoux, 1973)
	RACS820114	Value of theta(i-1) (Rackovsky-Scheraga, 1982)
	TANS770105	Normalized frequency of chain reversal S (Tanaka-Scheraga, 1977)
	MUNV940105	Free energy in beta-strand region (Munoz-Serrano, 1994)
	KARS160116	Weighted diameter based on the atomic number (maximum eccentricity) (Karkbara-Knisley, 2016)
JAK2	FASG760102	Melting point (Fasman, 1976)
	FAUJ880109	Number of hydrogen bond donors (Fauchere et al., 1988)
	FAUJ880111	Positive charge (Fauchere et al., 1988)
	GEIM800104	Alpha-helix indices for alpha/beta-proteins (Geisow-Roberts, 1980)
	GRAR740101	Composition (Grantham, 1974)
	KRIW790102	Fraction of site occupied by water (Krigbaum-Komoriya, 1979)
	LEVM760106	van der Waals parameter R0 (Levitt, 1976)
	LEWP710101	Frequency of occurrence in beta-bends (Lewis et al., 1971)
	MEEJ800102	Retention coefficient in HPLC, pH2.1 (Meek, 1980)
	NAKH900104	Normalized composition of mt-proteins (Nakashima et al., 199
	NAKH900106	Normalized composition from animal (Nakashima et al., 1990)
	OOBM850101	Optimized beta-structure-coil equilibrium constant (Oobatake et al., 1985)
	PALJ810114	Normalized frequency of turn in all-beta class (Palau et al., 1981)
	PONP800105	Surrounding hydrophobicity in beta-sheet (Ponnuswamy et al., 1980)
	PONP800107	Accessibility reduction ratio (Ponnuswamy et al., 1980)
	PTIO830102	Beta-coil equilibrium constant (Ptitsyn-Finkelstein, 1983)
	QIAN880115	Weights for beta-sheet at the window position of -5 (Qian-Sejnowski, 1988)
	QIAN880133	Weights for coil at the window position of 0 (Qian-Sejnowski, 1988)
	QIAN880137	Weights for coil at the window position of 4 (Qian-Sejnowski, 1988)
	RICJ880107	Relative preference value at N4 (Richardson-Richardson, 1988)
	ROBB790101	Hydration free energy (Robson-Osguthorpe, 1979)
	ROSG850102	Mean fractional area loss (Rose et al., 1985)
	TANS770106	Normalized frequency of chain reversal D (Tanaka-Scheraga, 1977)
	TANS770110	Normalized frequency of chain reversal (Tanaka-Scheraga, 1977)
	VENT840101	Bitterness (Venanzi, 1984)

	WOLR810101 ZIMJ680105 AURR980102 AURR980106 AURR980118 NADH010102 FUKS010108 MITS020101 WOLR790101 ENGD860101 KARS160120	Hydration potential (Wolfenden et al., 1981) RF rank (Zimmerman et al., 1968) Normalized positional residue frequency at helix termini N"' (Aurora- Rose, 1998) Normalized positional residue frequency at helix termini N1 (Aurora- Rose, 1998) Normalized positional residue frequency at helix termini C" (AuroraRose, 1998) Hydropathy scale based on self-information values in the two-state model (9% accessibility) (Naderi-Manesh et al., 2001) Interior composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001) Amphiphilicity index (Mitaku et al., 2002) Hydrophobicity index (Wolfenden et al., 1979) Hydrophobicity index (Engelman et al., 1986) Weighted minimum eigenvalue based on the atomic numbers (Karkbara- Knisley, 2016)
KMT2A	BEGF750103 GARJ730101 ISOY800105 JANJ790101 KANM800102 KARP850103 LEVM760103 NAKH900113 QIAN880131 QIAN880138 ZIMJ680102 PARS000102 ZHOH040102 DIGM050101 KARS160110	Conformational parameter of beta-turn (Beghin-Dirkx, 1975) Partition coefficient (Garel et al., 1973) Normalized relative frequency of bend S (Isogai et al., 1980) Ratio of buried and accessible molar fractions (Janin, 1979) Average relative probability of beta-sheet (Kanehisa-Tsong, 1980) Flexibility parameter for two rigid neighbors (Karplus-Schulz, 1985) Side chain angle theta(AAR) (Levitt, 1976) Ratio of average and computed composition (Nakashima et al., 1990) Weights for coil at the window position of -2 (Qian-Sejnowski, 1988) Weights for coil at the window position of 5 (Qian-Sejnowski, 1988) Bulkiness (Zimmerman et al., 1968) p-Values of thermophilic proteins based on the distributions of B values (Parthasarathy-Murthy, 2000) The relative stability scale extracted from mutation experiments (ZhouZhou, 2004) Hydrostatic pressure asymmetry index, PAI (Di Giulio, 2005) Minimum eigenvalue of the weighted Laplacian matrix of the graph (Karkbara-Knisley, 2016)
KMT2C	CHOC760103 CHOC760104 CIDH920104 CIDH920105 DESM900102 GARJ730101 GRAR740103 JANJ780102 KLEP840101 LEVM760103 MANP780101 MAXF760104 MAXF760105 MEEJ800101 MEIH800103 NAKH920102 NISK800101 NOZY710101 PALJ810116 PONP800103 PTIO830102	Proportion of residues 95\% buried (Chothia, 1976) Proportion of residues 100% buried (Chothia, 1976) Normalized hydrophobicity scales for alpha/beta-proteins (Cid et al., 1992) Normalized average hydrophobicity scales (Cid et al., 1992) Average membrane preference: AMP07 (Degli Esposti et al., 1990) Partition coefficient (Garel et al., 1973) Volume (Grantham, 1974) Percentage of buried residues (Janin et al., 1978) Net charge (Klein et al., 1984) Side chain angle theta(AAR) (Levitt, 1976) Average surrounding hydrophobicity (Manavalan-Ponnuswamy, 1978) Normalized frequency of left-handed alpha-helix (Maxfield-Scheraga, 1976) Normalized frequency of zeta L (Maxfield-Scheraga, 1976) Retention coefficient in HPLC, pH7.4 (Meek, 1980) Average side chain orientation angle (Meirovitch et al., 1980) AA composition of CYT2 of single-spanning proteins (Nakashima- Nishikawa, 1992) 8 A contact number (Nishikawa-Ooi, 1980) Transfer energy, organic solvent/water (Nozaki-Tanford, 1971) Normalized frequency of turn in alpha/beta class (Palau et al., 1981) Average gain ratio in surrounding hydrophobicity (Ponnuswamy et al., 1980) Beta-coil equilibrium constant (Ptitsyn-Finkelstein, 1983)

	QIAN880118 QIAN880122 QIAN880124 RACS770101 RACS770103 RACS820109 RICJ880115 ROSG850102 VASM830102 WERD780101 WOLS870103 ZIMJ680104 AURR980103 VINM940103 PARS000101 NADH010101 NADH010102 NADH010103 MITS020101 WILM950104 GUOD860101 BASU050103 CASOR030105 CORJ820101 MIYS9900103	Weights for beta-sheet at the window position of -2 (Qian-Sejnowski, 1988) Weights for beta-sheet at the window position of 2 (Qian-Sejnowski, 1988) Weights for beta-sheet at the window position of 4 (Qian-Sejnowski, 1988) Average reduced distance for C-alpha (Rackovsky-Scheraga, 1977) Side chain orientational preference (Rackovsky-Scheraga, 1977) Average relative fractional occurrence in AL(i-1) (Rackovsky-Scheraga, 1982) Relative preference value at C-cap (Richardson-Richardson, 1988) Mean fractional area loss (Rose et al., 1985) Relative population of conformational state C (Vasquez et al., 1983) Propensity to be buried inside (Wertz-Scheraga, 1978) Principal property value z3 (Wold et al., 1987) Isoelectric point (Zimmerman et al., 1968) Normalized positional residue frequency at helix termini N" (AuroraRose, 1998) Normalized flexibility parameters (B-values) for each residue surrounded by one rigid neighbours (Vihinen et al., 1994) p-Values of mesophilic proteins based on the distributions of B values (Parthasarathy-Murthy, 2000) Hydropathy scale based on self-information values in the two-state model (5\% accessibility) (Naderi-Manesh et al., 2001) Hydropathy scale based on self-information values in the two-state model (9% accessibility) (Naderi-Manesh et al., 2001) Hydropathy scale based on self-information values in the two-state model (16\% accessibility) (Naderi-Manesh et al., 2001) Amphiphilicity index (Mitaku et al., 2002) Hydrophobicity coefficient in RP-HPLC, C18 with 0.1\%TFA/2$\mathrm{PrOH} / \mathrm{MeCN} / \mathrm{H} 2 \mathrm{O}$ (Wilce et al. 1995) Retention coefficient at pH 2 (Guo et al., 1986) Interactivity scale obtained by maximizing the mean of correlation coefficient over pairs of sequences sharing the TIM barrel fold (Bastolla et al., 2005) Linker propensity from small dataset (linker length is less than six residues) (George-Heringa, 2003) Hydrophobicity scale from native protein structures (Casari-Sippl, 19 NNEIG index (Cornette et al., 1987) Optimized relative partition energies - method B (Miyazawa-Jernigan, 1999)
KMT2D	BULH740102 BURA740101 CHAM830105 CHAM830106 CHAM830108 CHOC760101 CHOP780206 CIDH920101 FAUJ880108 FAUJ880112 GARJ730101 HOPT810101 ISOY800101 ISOY800102 ISOY800107 JOND750102 KANM800103	Apparent partial specific volume (Bull-Breese, 1974) Normalized frequency of alpha-helix (Burgess et al., 1974) The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983) The number of bonds in the longest chain (Charton-Charton, 1983) A parameter of charge transfer donor capability (Charton-Charton, 1983) Residue accessible surface area in tripeptide (Chothia, 1976) Normalized frequency of N-terminal non helical region (Chou-Fasman, 1978b) Normalized hydrophobicity scales for alpha-proteins (Cid et al., 1992) Localized electrical effect (Fauchere et al., 1988) Negative charge (Fauchere et al., 1988) Partition coefficient (Garel et al., 1973) Hydrophilicity value (Hopp-Woods, 1981) Normalized relative frequency of alpha-helix (Isogai et al., 1980) Normalized relative frequency of extended structure (Isogai et al., 1980) Normalized relative frequency of double bend (Isogai et al., 1980) pK (-COOH) (Jones, 1975) Average relative probability of inner helix (Kanehisa-Tsong, 1980)

LEVM760104
LEVM760107
NAKH900104
NAKH900106
NAKH920102
NAKH920103
OOBM850103
OOBM850104
PALJ810105
PONP800101
PRAM820102
QIAN880106
QIAN880114
QIAN880115
QIAN880128
QIAN880136
QIAN880139
RACS770103
RACS820101
RACS820106
RACS820109
RADA880103
RADA880106
RICJ880117
SIMZ760101
SNEP660103
VHEG790101
WARP780101
YUTK870102
YUTK870103
YUTK870104
AURR980108
AURR980116
WIMW960101
TAKK010101
NADH010101
NADH010104

NADH010105
NADH010106
FUKS010101
FUKS010104
WILM950102

Side chain torsion angle phi(AAAR) (Levitt, 1976)
van der Waals parameter epsilon (Levitt, 1976)
Normalized composition of mt-proteins (Nakashima et al., 1990)
Normalized composition from animal (Nakashima et al., 1990)
AA composition of CYT2 of single-spanning proteins (NakashimaNishikawa, 1992)
AA composition of EXT of single-spanning proteins (NakashimaNishikawa, 1992)
Optimized transfer energy parameter (Oobatake et al., 1985)
Optimized average non-bonded energy per atom (Oobatake et al., 1985)
Normalized frequency of turn from LG (Palau et al., 1981)
Surrounding hydrophobicity in folded form (Ponnuswamy et al., 1980)
Slope in regression analysis x 1.0E1 (Prabhakaran-Ponnuswamy, 1982)
Weights for alpha-helix at the window position of -1 (Qian-Sejnowski, 1988)

Weights for beta-sheet at the window position of -6 (Qian-Sejnowski, 1988)

Weights for beta-sheet at the window position of -5 (Qian-Sejnowski, 1988)

Weights for coil at the window position of -5 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 3 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 6 (Qian-Sejnowski, 1988)
Side chain orientational preference (Rackovsky-Scheraga, 1977)
Average relative fractional occurrence in A0(i) (Rackovsky-Scheraga, 1982)

Average relative fractional occurrence in ER(i) (Rackovsky-Scheraga, 1982)

Average relative fractional occurrence in AL(i-1) (Rackovsky-Scheraga, 1982)

Transfer free energy from vap to chx (Radzicka-Wolfenden, 1988)
Accessible surface area (Radzicka-Wolfenden, 1988)
Relative preference value at C" (Richardson-Richardson, 1988)
Transfer free energy (Simon, 1976), Cited by Charton-Charton (1982) Principal component III (Sneath, 1966)
Transfer free energy to lipophilic phase (von Heijne-Blomberg, 1979)
Average interactions per side chain atom (Warme-Morgan, 1978)
Unfolding Gibbs energy in water, pH9.0 (Yutani et al., 1987)
Activation Gibbs energy of unfolding, pH7.0 (Yutani et al., 1987)
Activation Gibbs energy of unfolding, pH9.0 (Yutani et al., 1987)
Normalized positional residue frequency at helix termini N3 (AuroraRose, 1998)
Normalized positional residue frequency at helix termini Cc (AuroraRose, 1998)
Free energies of transfer of AcWl-X-LL peptides from bilayer interface to water (Wimley-White, 1996)
Side-chain contribution to protein stability ($\mathrm{kJ} / \mathrm{mol}$) (Takano-Yutani, 2001)

Hydropathy scale based on self-information values in the two-state model (5\% accessibility) (Naderi-Manesh et al., 2001)
Hydropathy scale based on self-information values in the two-state model (20\% accessibility) (Naderi-Manesh et al., 2001)
Hydropathy scale based on self-information values in the two-state model (25\% accessibility) (Naderi-Manesh et al., 2001)
Hydropathy scale based on self-information values in the two-state model (36\% accessibility) (Naderi-Manesh et al., 2001)
Surface composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001)
Surface composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001)
Hydrophobicity coefficient in RP-HPLC, C8 with 0.1% TFA/MeCN/H2O

	KUHL950101 GEOR030101 GEOR030105 PONJ960101 WOLR790101 JACR890101 KARS160107 KARS160112 KARS160120	(Wilce et al. 1995) Hydrophilicity scale (Kuhn et al., 1995) Linker propensity from all dataset (George-Heringa, 2003) Linker propensity from small dataset (linker length is less than six residues) (George-Heringa, 2003) Average volumes of residues (Pontius et al., 1996) Hydrophobicity index (Wolfenden et al., 1979) Weights from the IFH scale (Jacobs-White, 1989) Diameter (maximum eccentricity) (Karkbara-Knisley, 2016) Second smallest eigenvalue of the Laplacian matrix of the graph (Karkbara-Knisley, 2016) Weighted minimum eigenvalue based on the atomic numbers (KarkbaraKnisley, 2016)
NSD1	ARGP820101	Hydrophobicity index (Argos et al., 1982)
	ARGP820102	Signal sequence helical potential (Argos et al., 1982)
	ARGP820103	Membrane-buried preference parameters (Argos et al., 1982)
	BEGF750103	Conformational parameter of beta-turn (Beghin-Dirkx, 1975)
	BULH740102	Apparent partial specific volume (Bull-Breese, 1974)
	BUNA790101	alpha-NH chemical shifts (Bundi-Wuthrich, 1979)
	CHAM830102	A parameter defined from the residuals obtained from the best correlation of the Chou-Fasman parameter of beta-sheet (Charton-Charton, 1983)
	CHAM830105	The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983)
	CHOP780208	Normalized frequency of N-terminal beta-sheet (Chou-Fasman, 1978b)
	CHOP780214	Frequency of the 3rd residue in turn (Chou-Fasman, 1978b)
	CIDH920103	Normalized hydrophobicity scales for alpha+beta-proteins (Cid et al., 1992)
	CIDH920104	Normalized hydrophobicity scales for alpha/beta-proteins (Cid et al., 1992)
	FAUJ830101	Hydrophobic parameter pi (Fauchere-Pliska, 1983)
	FAUJ880110	Number of full nonbonding orbitals (Fauchere et al., 1988)
	FAUJ880112	Negative charge (Fauchere et al., 1988)
	FAUJ880113	$\mathrm{pK}-\mathrm{a}(\mathrm{RCOOH})($ Fauchere et al., 1988)
	FINA910102	Helix initiation parameter at posision $\mathrm{i}, \mathrm{i}+1, \mathrm{i}+2$ (Finkelstein et al., 1991)
	GARJ730101	Partition coefficient (Garel et al., 1973)
	GRAR740101	Composition (Grantham, 1974)
	HOPA770101	Hydration number (Hopfinger, 1971), Cited by Charton-Charton (1982)
	HUTJ700102	Absolute entropy (Hutchens, 1970)
	ISOY800105	Normalized relative frequency of bend S (Isogai et al., 1980)
	ISOY800108	Normalized relative frequency of coil (Isogai et al., 1980)
	JANJ790101	Ratio of buried and accessible molar fractions (Janin, 1979)
	JOND750101	Hydrophobicity (Jones, 1975)
	KRIW710101	Side chain interaction parameter (Krigbaum-Rubin, 1971)
	KRIW790101	Side chain interaction parameter (Krigbaum-Komoriya, 1979)
	LAWE840101	Transfer free energy, CHP/water (Lawson et al., 1984)
	LEVM760106	van der Waals parameter R0 (Levitt, 1976)
	MEEJ800102	Retention coefficient in HPLC, pH2.1 (Meek, 1980)
	NAGK730102	Normalized frequency of bata-structure (Nagano, 1973)
	NAKH900103	AA composition of mt-proteins (Nakashima et al., 1990)
	NAKH900107	AA composition of mt-proteins from fungi and plant (Nakashima et al., 1990)
	NAKH900109	AA composition of membrane proteins (Nakashima et al., 1990)
	PALJ810108	Normalized frequency of alpha-helix in alpha+beta class (Palau et al., 1981)
	PARJ860101	HPLC parameter (Parker et al., 1986)
	PLIV810101	Partition coefficient (Pliska et al., 1981)
	PRAM820101	Intercept in regression analysis (Prabhakaran-Ponnuswamy, 1982)
	PTIO830101	Helix-coil equilibrium constant (Ptitsyn-Finkelstein, 1983)
	QIAN880102	Weights for alpha-helix at the window position of -5 (Qian-Sejnowski, 1988)

QIAN880105
QIAN880108
QIAN880117
QIAN880119
QIAN880125
RACS820102

RACS820104
RADA880102
RADA880107
RICJ880104
RICJ880105
RICJ880107
RICJ880113
RICJ880117
SUEM840102
TANS770109
YUTK870103
YUTK870104
ZIMJ680105
AURR980102
AURR980106
AURR980107
AURR980113
AURR980119

MUNV940101
MUNV940102
MUNV940105
KUMS000103

KUMS000104
FUKS010109
WILM950102
GEOR030105
GEOR030109

DIGM050101
JACR890101
COWR900101
BLAS910101
KARS160106
KARS160113
KARS160116

Weights for alpha-helix at the window position of -2 (Qian-Sejnowski, 1988)

Weights for alpha-helix at the window position of 1 (Qian-Sejnowski, 1988)

Weights for beta-sheet at the window position of -3 (Qian-Sejnowski, 1988)

Weights for beta-sheet at the window position of -1 (Qian-Sejnowski, 1988)

Weights for beta-sheet at the window position of 5 (Qian-Sejnowski, 1988)

Average relative fractional occurrence in AR(i) (Rackovsky-Scheraga, 1982)

Average relative fractional occurrence in EL(i) (Rackovsky-Scheraga, 1982)

Transfer free energy from oct to wat (Radzicka-Wolfenden, 1988)
Energy transfer from out to in(95\%buried) (Radzicka-Wolfenden, 1988)
Relative preference value at N1 (Richardson-Richardson, 1988)
Relative preference value at N2 (Richardson-Richardson, 1988)
Relative preference value at N4 (Richardson-Richardson, 1988)
Relative preference value at C2 (Richardson-Richardson, 1988)
Relative preference value at C" (Richardson-Richardson, 1988)
Zimm-Bragg parameter sigma x 1.0E4 (Sueki et al., 1984)
Normalized frequency of coil (Tanaka-Scheraga, 1977)
Activation Gibbs energy of unfolding, pH 7.0 (Yutani et al., 1987)
Activation Gibbs energy of unfolding, pH9.0 (Yutani et al., 1987) RF rank (Zimmerman et al., 1968)
Normalized positional residue frequency at helix termini N"' (AuroraRose, 1998)
Normalized positional residue frequency at helix termini N1 (AuroraRose, 1998)
Normalized positional residue frequency at helix termini N2 (AuroraRose, 1998)
Normalized positional residue frequency at helix termini C3 (AuroraRose, 1998)
Normalized positional residue frequency at helix termini C"' (AuroraRose, 1998)
Free energy in alpha-helical conformation (Munoz-Serrano, 1994)
Free energy in alpha-helical region (Munoz-Serrano, 1994)
Free energy in beta-strand region (Munoz-Serrano, 1994)
Distribution of amino acid residues in the alpha-helices in thermophilic proteins (Kumar et al., 2000)
Distribution of amino acid residues in the alpha-helices in mesophilic proteins (Kumar et al., 2000)
Entire chain composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001)
Hydrophobicity coefficient in RP-HPLC, C8 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995)
Linker propensity from small dataset (linker length is less than six residues) (George-Heringa, 2003)
Linker propensity from non-helical (annotated by DSSP) dataset (GeorgeHeringa, 2003)
Hydrostatic pressure asymmetry index, PAI (Di Giulio, 2005)
Weights from the IFH scale (Jacobs-White, 1989)
Hydrophobicity index, 3.0 pH (Cowan-Whittaker, 1990)
Scaled side chain hydrophobicity values (Black-Mould, 1991)
Radius (minimum eccentricity) (Karkbara-Knisley, 2016)
Weighted domination number using the atomic number (KarkbaraKnisley, 2016)
Weighted diameter based on the atomic number (maximum eccentricity) (Karkbara-Knisley, 2016)

	KARS160120	Weighted minimum eigenvalue based on the atomic numbers (KarkbaraKnisley, 2016)
SETD2	BURA740102	Normalized frequency of extended structure (Burgess et al., 1974)
	CHAM830105	The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983)
	CHAM830108	A parameter of charge transfer donor capability (Charton-Charton, 1983)
	FAUJ880108	Localized electrical effect (Fauchere et al., 1988)
	FINA910101	Helix initiation parameter at posision i-1 (Finkelstein et al., 1991)
	FINA910103	Helix termination parameter at posision j-2,j-1,j (Finkelstein et al., 1991)
	GEIM800105	Beta-strand indices (Geisow-Roberts, 1980)
	GRAR740101	Composition (Grantham, 1974)
	ISOY800106	Normalized relative frequency of helix end (Isogai et al., 1980)
	JUKT750101	Amino acid distribution (Jukes et al., 1975)
	KARP850103	Flexibility parameter for two rigid neighbors (Karplus-Schulz, 1985)
	MAXF760103	Normalized frequency of zeta R (Maxfield-Scheraga, 1976)
	MAXF760104	Normalized frequency of left-handed alpha-helix (Maxfield-Scheraga, 1976)
	MAXF760105	Normalized frequency of zeta L (Maxfield-Scheraga, 1976)
	MAXF760106	Normalized frequency of alpha region (Maxfield-Scheraga, 1976)
	NAKH900107	AA composition of mt-proteins from fungi and plant (Nakashima et al., 1990)
	NAKH920102	AA composition of CYT2 of single-spanning proteins (NakashimaNishikawa, 1992)
	NAKH920105	AA composition of MEM of single-spanning proteins (NakashimaNishikawa, 1992)
	NAKH920107	AA composition of EXT of multi-spanning proteins (NakashimaNishikawa, 1992)
	OOBM850103	Optimized transfer energy parameter (Oobatake et al., 1985)
	PALJ810104	Normalized frequency of beta-sheet from CF (Palau et al., 1981)
	PALJ810112	Normalized frequency of beta-sheet in alpha/beta class (Palau et al., 1981)
	PONP800101	Surrounding hydrophobicity in folded form (Ponnuswamy et al., 1980)
	PONP800108	Average number of surrounding residues (Ponnuswamy et al., 1980)
	QIAN880117	Weights for beta-sheet at the window position of -3 (Qian-Sejnowski, 1988)
	QIAN880139	Weights for coil at the window position of 6 (Qian-Sejnowski, 1988)
	RACS770103	Side chain orientational preference (Rackovsky-Scheraga, 1977)
	RICJ880101	Relative preference value at ${ }^{\text {" }}$ (Richardson-Richardson, 1988)
	RICJ880102	Relative preference value at N^{\prime} (Richardson-Richardson, 1988)
	ROBB760110	Information measure for middle turn (Robson-Suzuki, 1976)
	TANS770106	Normalized frequency of chain reversal D (Tanaka-Scheraga, 1977)
	TANS770107	Normalized frequency of left-handed helix (Tanaka-Scheraga, 1977)
	VELV850101	Electron-ion interaction potential (Veljkovic et al., 1985)
	VENT840101	Bitterness (Venanzi, 1984)
	WEBA780101	RF value in high salt chromatography (Weber-Lacey, 1978)
	ZIMJ680101	Hydrophobicity (Zimmerman et al., 1968)
	AURR980101	Normalized positional residue frequency at helix termini N^{\prime} '(AuroraRose, 1998)
	AURR980103	Normalized positional residue frequency at helix termini N " (AuroraRose, 1998)
	AURR980106	Normalized positional residue frequency at helix termini N1 (AuroraRose, 1998)
	AURR980118	Normalized positional residue frequency at helix termini C" (AuroraRose, 1998)
	AURR980120	Normalized positional residue frequency at helix termini C4' (AuroraRose, 1998)
	VINM940102	Normalized flexibility parameters (B-values) for each residue surrounded by none rigid neighbours (Vihinen et al., 1994)
	FUKS010101	Surface composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001)
	FUKS010102	Surface composition of amino acids in intracellular proteins of mesophiles

	FUKS010103 FUKS010109 COSI940101 BASU050103 GEOR030105 KARS160106 KARS160108 KARS160120	(percent) (Fukuchi-Nishikawa, 2001) Surface composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001) Entire chain composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001) Electron-ion interaction potential values (Cosic, 1994) Interactivity scale obtained by maximizing the mean of correlation coefficient over pairs of sequences sharing the TIM barrel fold (Bastolla et al., 2005) Linker propensity from small dataset (linker length is less than six residues) (George-Heringa, 2003) Radius (minimum eccentricity) (Karkbara-Knisley, 2016) Average weighted degree (total degree, divided by the number of vertices) (Karkbara-Knisley, 2016) Weighted minimum eigenvalue based on the atomic numbers (KarkbaraKnisley, 2016)
SF3B1	ZASB820101	Dependence of partition coefficient on ionic strength (Zaslavsky et al., 1982)
	ZIMJ680101	Hydrophobicity (Zimmerman et al., 1968)
	ZIMJ680102	Bulkiness (Zimmerman et al., 1968)
	ZIMJ680103	Polarity (Zimmerman et al., 1968)
	ZIMJ680104	Isoelectric point (Zimmerman et al., 1968)
	ZIMJ680105	RF rank (Zimmerman et al., 1968)
	AURR980101	Normalized positional residue frequency at helix termini N4'(AuroraRose, 1998)
	AURR980102	Normalized positional residue frequency at helix termini N"' (AuroraRose, 1998)
	AURR980103	Normalized positional residue frequency at helix termini N" (AuroraRose, 1998)
	AURR980104	Normalized positional residue frequency at helix termini N^{\prime} (Aurora-Rose, 1998)
	AURR980105	Normalized positional residue frequency at helix termini Nc (AuroraRose, 1998)
	AURR980106	Normalized positional residue frequency at helix termini N1 (AuroraRose, 1998)
	AURR980107	Normalized positional residue frequency at helix termini N2 (AuroraRose, 1998)
	AURR980108	Normalized positional residue frequency at helix termini N3 (AuroraRose, 1998)
	AURR980109	Normalized positional residue frequency at helix termini N4 (AuroraRose, 1998)
	AURR980110	Normalized positional residue frequency at helix termini N5 (AuroraRose, 1998)
	AURR980111	Normalized positional residue frequency at helix termini C5 (AuroraRose, 1998)
	AURR980112	Normalized positional residue frequency at helix termini C4 (AuroraRose, 1998)
	AURR980113	Normalized positional residue frequency at helix termini C3 (AuroraRose, 1998)
	AURR980114	Normalized positional residue frequency at helix termini C2 (AuroraRose, 1998)
	AURR980115	Normalized positional residue frequency at helix termini C1 (AuroraRose, 1998)
	AURR980116	Normalized positional residue frequency at helix termini Cc (AuroraRose, 1998)
	AURR980117	Normalized positional residue frequency at helix termini C' (Aurora-Rose, 1998)
	AURR980118	Normalized positional residue frequency at helix termini C" (AuroraRose, 1998)
	AURR980119	Normalized positional residue frequency at helix termini C"' (Aurora-

AURR980120
ONEK900101
ONEK900102

VINM940101

VINM940102
VINM940103
VINM940104
MUNV940101
MUNV940102
MUNV940103
MUNV940104
MUNV940105
WIMW960101
KIMC930101
MONM990101
BLAM930101
PARS000101
PARS000102
KUMS000101

KUMS000102

KUMS000103

KUMS000104

TAKK010101
FODM020101 NADH010101

NADH010102
NADH010103
NADH010104
NADH010105
NADH010106
NADH010107
MONM990201
KOEP990101
KOEP990102
CEDJ970101

Rose, 1998)
Normalized positional residue frequency at helix termini C4' (AuroraRose, 1998)
Delta G values for the peptides extrapolated to 0 M urea (O'NeilDeGrado, 1990)
Helix formation parameters (delta delta G) (O'Neil-DeGrado, 1990)
Normalized flexibility parameters (B-values), average (Vihinen et al., 1994)

Normalized flexibility parameters (B-values) for each residue surrounded by none rigid neighbours (Vihinen et al., 1994)
Normalized flexibility parameters (B-values) for each residue surrounded by one rigid neighbours (Vihinen et al., 1994)
Normalized flexibility parameters (B-values) for each residue surrounded by two rigid neighbours (Vihinen et al., 1994)
Free energy in alpha-helical conformation (Munoz-Serrano, 1994)
Free energy in alpha-helical region (Munoz-Serrano, 1994)
Free energy in beta-strand conformation (Munoz-Serrano, 1994)
Free energy in beta-strand region (Munoz-Serrano, 1994)
Free energy in beta-strand region (Munoz-Serrano, 1994)
Free energies of transfer of AcWl-X-LL peptides from bilayer interface to water (Wimley-White, 1996)
Thermodynamic beta sheet propensity (Kim-Berg, 1993)
Turn propensity scale for transmembrane helices (Monne et al., 1999)
Alpha helix propensity of position 44 in T4 lysozyme (Blaber et al., 1993)
p-Values of mesophilic proteins based on the distributions of B values (Parthasarathy-Murthy, 2000)
p-Values of thermophilic proteins based on the distributions of B values (Parthasarathy-Murthy, 2000)
Distribution of amino acid residues in the 18 non-redundant families of thermophilic proteins (Kumar et al., 2000)
Distribution of amino acid residues in the 18 non-redundant families of mesophilic proteins (Kumar et al., 2000)
Distribution of amino acid residues in the alpha-helices in thermophilic proteins (Kumar et al., 2000)
Distribution of amino acid residues in the alpha-helices in mesophilic proteins (Kumar et al., 2000)
Side-chain contribution to protein stability ($\mathrm{kJ} / \mathrm{mol}$) (Takano-Yutani, 2001)

Propensity of amino acids within pi-helices (Fodje-Al-Karadaghi, 2002)
Hydropathy scale based on self-information values in the two-state model (5\% accessibility) (Naderi-Manesh et al., 2001)
Hydropathy scale based on self-information values in the two-state model (9\% accessibility) (Naderi-Manesh et al., 2001)
Hydropathy scale based on self-information values in the two-state model (16\% accessibility) (Naderi-Manesh et al., 2001)
Hydropathy scale based on self-information values in the two-state model (20\% accessibility) (Naderi-Manesh et al., 2001)
Hydropathy scale based on self-information values in the two-state model (25\% accessibility) (Naderi-Manesh et al., 2001)
Hydropathy scale based on self-information values in the two-state model (36\% accessibility) (Naderi-Manesh et al., 2001)
Hydropathy scale based on self-information values in the two-state model (50\% accessibility) (Naderi-Manesh et al., 2001)
Averaged turn propensities in a transmembrane helix (Monne et al., 1999) Alpha-helix propensity derived from designed sequences (Koehl-Levitt, 1999)

Beta-sheet propensity derived from designed sequences (Koehl-Levitt, 1999)

Composition of amino acids in extracellular proteins (percent) (Cedano et al., 1997)

CEDJ970102	Composition of amino acids in anchored proteins (percent) (Cedano et al., 1997)
CEDJ970103	Composition of amino acids in membrane proteins (percent) (Cedano et al., 1997)
CEDJ970104	Composition of amino acids in intracellular proteins (percent) (Cedano et al., 1997)
CEDJ970105	Composition of amino acids in nuclear proteins (percent) (Cedano et al., 1997)
FUKS010101	Surface composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001)
FUKS010102	Surface composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001)
FUKS010103	Surface composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001)
FUKS010104	Surface composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001)
FUKS010105	Interior composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001)
FUKS010106	Interior composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001)
FUKS010107	Interior composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001)
FUKS010108	Interior composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001)
FUKS010109	Entire chain composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-Nishikawa, 2001)
FUKS010110	Entire chain composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001)
FUKS010111	Entire chain composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001)
FUKS010112	Entire chain compositino of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001)
MITS020101	Amphiphilicity index (Mitaku et al., 2002)
TSAJ990101	Volumes including the crystallographic waters using the ProtOr (Tsai et al., 1999)
TSAJ990102	Volumes not including the crystallographic waters using the ProtOr (Tsai et al., 1999)
COSI940101	Electron-ion interaction potential values (Cosic, 1994)
PONP930101	Hydrophobicity scales (Ponnuswamy, 1993)
WILM950101	Hydrophobicity coefficient in RP-HPLC, C18 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995)
WILM950102	Hydrophobicity coefficient in RP-HPLC, C8 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995)
WILM950103	Hydrophobicity coefficient in RP-HPLC, C4 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995)
WILM950104	Hydrophobicity coefficient in RP-HPLC, C18 with $0.1 \% \mathrm{TFA} / 2-$ $\mathrm{PrOH} / \mathrm{MeCN} / \mathrm{H} 2 \mathrm{O}$ (Wilce et al. 1995)
KUHL950101	Hydrophilicity scale (Kuhn et al., 1995)
GUOD860101	Retention coefficient at pH 2 (Guo et al., 1986)
JURD980101	Modified Kyte-Doolittle hydrophobicity scale (Juretic et al., 1998)
BASU050101	Interactivity scale obtained from the contact matrix (Bastolla et al., 2005)
BASU050102	Interactivity scale obtained by maximizing the mean of correlation coefficient over single-domain globular proteins (Bastolla et al., 2005)
BASU050103	Interactivity scale obtained by maximizing the mean of correlation coefficient over pairs of sequences sharing the TIM barrel fold (Bastolla et al., 2005)
SUYM030101	Linker propensity index (Suyama-Ohara, 2003)
PUNT030101	Knowledge-based membrane-propensity scale from 1D_Helix in MPtopo databases (Punta-Maritan, 2003)
PUNT030102	Knowledge-based membrane-propensity scale from 3D_Helix in MPtopo

GEOR030101
GEOR030102
GEOR030103
GEOR030104
GEOR030105
GEOR030106

GEOR030107
GEOR030108

GEOR030109
ZHOH040101

ZHOH040102
ZHOH040103
BAEK050101
HARY940101
PONJ960101
DIGM050101
WOLR790101
OLSK800101
KIDA850101
GUYH850102

GUYH850104
GUYH850105
JACR890101
COWR900101
BLAS910101
CASG920101
CORJ870101
CORJ870102
CORJ870103
CORJ870104
CORJ870105
CORJ870106
CORJ870107
CORJ870108
MIYS990101
MIYS990102
MIYS990103
MIYS990104
MIYS990105
ENGD860101
FASG890101
KARS160101
KARS160102
KARS160103
KARS160104
databases (Punta-Maritan, 2003)
Linker propensity from all dataset (George-Heringa, 2003)
Linker propensity from 1-linker dataset (George-Heringa, 2003)
Linker propensity from 2-linker dataset (George-Heringa, 2003)
Linker propensity from 3-linker dataset (George-Heringa, 2003)
Linker propensity from small dataset (linker length is less than six residues) (George-Heringa, 2003)
Linker propensity from medium dataset (linker length is between six and 14 residues) (George-Heringa, 2003)
Linker propensity from long dataset (linker length is greater than 14 residues) (George-Heringa, 2003)
Linker propensity from helical (annotated by DSSP) dataset (GeorgeHeringa, 2003)
Linker propensity from non-helical (annotated by DSSP) dataset (GeorgeHeringa, 2003)
The stability scale from the knowledge-based atom-atom potential (ZhouZhou, 2004)
The relative stability scale extracted from mutation experiments (ZhouZhou, 2004)
Buriability (Zhou-Zhou, 2004)
Linker index (Bae et al., 2005)
Mean volumes of residues buried in protein interiors (Harpaz et al., 1994)
Average volumes of residues (Pontius et al., 1996)
Hydrostatic pressure asymmetry index, PAI (Di Giulio, 2005)
Hydrophobicity index (Wolfenden et al., 1979)
Average internal preferences (Olsen, 1980)
Hydrophobicity-related index (Kidera et al., 1985)
Apparent partition energies calculated from Wertz-Scheraga index (Guy, 1985)

Apparent partition energies calculated from Janin index (Guy, 1985)
Apparent partition energies calculated from Chothia index (Guy, 1985)
Weights from the IFH scale (Jacobs-White, 1989)
Hydrophobicity index, 3.0 pH (Cowan-Whittaker, 1990)
Scaled side chain hydrophobicity values (Black-Mould, 1991)
Hydrophobicity scale from native protein structures (Casari-Sippl, 1992)
NNEIG index (Cornette et al., 1987)
SWEIG index (Cornette et al., 1987)
PRIFT index (Cornette et al., 1987)
PRILS index (Cornette et al., 1987)
ALTFT index (Cornette et al., 1987)
ALTLS index (Cornette et al., 1987)
TOTFT index (Cornette et al., 1987)
TOTLS index (Cornette et al., 1987)
Relative partition energies derived by the Bethe approximation (Miyazawa-Jernigan, 1999)
Optimized relative partition energies - method A (Miyazawa-Jernigan, 1999)

Optimized relative partition energies - method B (Miyazawa-Jernigan, 1999)

Optimized relative partition energies - method C (Miyazawa-Jernigan, 1999)

Optimized relative partition energies - method D (Miyazawa-Jernigan, 1999)

Hydrophobicity index (Engelman et al., 1986)
Hydrophobicity index (Fasman, 1989)
Number of vertices (order of the graph) (Karkbara-Knisley, 2016)
Number of edges (size of the graph) (Karkbara-Knisley, 2016)
Total weighted degree of the graph (obtained by adding all the weights of all the vertices) (Karkbara-Knisley, 2016)
Weighted domination number (Karkbara-Knisley, 2016)

	KARS160105 KARS160106 KARS160107 KARS160108 KARS160109 KARS160110 KARS160111 KARS160112 KARS160113 KARS160114 KARS160115 KARS160116 KARS160117 KARS160118 KARS160119 KARS160120 KARS160121 KARS160122	Average eccentricity (Karkbara-Knisley, 2016) Radius (minimum eccentricity) (Karkbara-Knisley, 2016) Diameter (maximum eccentricity) (Karkbara-Knisley, 2016) Average weighted degree (total degree, divided by the number of vertices) (Karkbara-Knisley, 2016) Maximum eigenvalue of the weighted Laplacian matrix of the graph (Karkbara-Knisley, 2016) Minimum eigenvalue of the weighted Laplacian matrix of the graph (Karkbara-Knisley, 2016) Average eigenvalue of the Laplacian matrix of the the graph (KarkbaraKnisley, 2016) Second smallest eigenvalue of the Laplacian matrix of the graph (Karkbara-Knisley, 2016) Weighted domination number using the atomic number (KarkbaraKnisley, 2016) Average weighted eccentricity based on the the atomic number (KarkbaraKnisley, 2016) Weighted radius based on the atomic number (minimum eccentricity) (Karkbara-Knisley, 2016) Weighted diameter based on the atomic number (maximum eccentricity) (Karkbara-Knisley, 2016) Total weighted atomic number of the graph (obtained by summing all the atomic number of each of the vertices in the graph) (Karkbara-Knisley, 2016) Average weighted atomic number or degree based on atomic number in the graph (Karkbara-Knisley, 2016) Weighted maximum eigenvalue based on the atomic numbers (KarkbaraKnisley, 2016) Weighted minimum eigenvalue based on the atomic numbers (KarkbaraKnisley, 2016) Weighted average eigenvalue based on the atomic numbers (KarkbaraKnisley, 2016) Weighted second smallest eigenvalue of the weighted Laplacian matrix (Karkbara-Knisley, 2016)
SPEN	CHAM830101 CHAM830102 CHOP780101 CHOP780203 CHOP780210 CHOP780211 CHOP780216 GARJ730101 GEIM800108 LEVM760107 LEVM780103 MAXF760105 MCMT640101 NAGK730103 PALJ810110 PONP800106 PRAM900104 QIAN880115 QIAN880116	The Chou-Fasman parameter of the coil conformation (Charton-Charton, 1983) A parameter defined from the residuals obtained from the best correlation of the Chou-Fasman parameter of beta-sheet (Charton-Charton, 1983) Normalized frequency of beta-turn (Chou-Fasman, 1978a) Normalized frequency of beta-turn (Chou-Fasman, 1978b) Normalized frequency of N -terminal non beta region (Chou-Fasman, 1978b) Normalized frequency of C-terminal non beta region (Chou-Fasman, 1978b) Normalized frequency of the 2nd and 3rd residues in turn (Chou-Fasman, 1978b) Partition coefficient (Garel et al., 1973) Aperiodic indices (Geisow-Roberts, 1980) van der Waals parameter epsilon (Levitt, 1976) Normalized frequency of reverse turn, with weights (Levitt, 1978) Normalized frequency of zeta L (Maxfield-Scheraga, 1976) Refractivity (McMeekin et al., 1964), Cited by Jones (1975) Normalized frequency of coil (Nagano, 1973) Normalized frequency of beta-sheet in all-beta class (Palau et al., 1981) Surrounding hydrophobicity in turn (Ponnuswamy et al., 1980) Relative frequency in reverse-turn (Prabhakaran, 1990) Weights for beta-sheet at the window position of -5 (Qian-Sejnowski, 1988) Weights for beta-sheet at the window position of -4 (Qian-Sejnowski, 1988)

	ROBB760105 ROBB760111 SNEP660104 TANS770106 VASM830101 VELV850101 AURR980101 MITS020101 COSI940101 WILM950103 GEOR030105 CORJ870104 KARS160118	Information measure for extended (Robson-Suzuki, 1976) Information measure for C-terminal turn (Robson-Suzuki, 1976) Principal component IV (Sneath, 1966) Normalized frequency of chain reversal D (Tanaka-Scheraga, 1977) Relative population of conformational state A (Vasquez et al., 1983) Electron-ion interaction potential (Veljkovic et al., 1985) Normalized positional residue frequency at helix termini N4'(Aurora- Rose, 1998) Amphiphilicity index (Mitaku et al., 2002) Electron-ion interaction potential values (Cosic, 1994) Hydrophobicity coefficient in RP-HPLC, C4 with 0.1% TFA/MeCN/H2O (Wilce et al. 1995) Linker propensity from small dataset (linker length is less than six residues) (George-Heringa, 2003) PRILS index (Cornette et al., 1987) Average weighted atomic number or degree based on atomic number in the graph (Karkbara-Knisley, 2016)
TET2	BUNA790101	alpha-NH chemical shifts (Bundi-Wuthrich, 1979)
	FAUJ880105	STERIMOL minimum width of the side chain (Fauchere et al., 1988)
	GEIM800105	Beta-strand indices (Geisow-Roberts, 1980)
	HOPA770101	Hydration number (Hopfinger, 1971), Cited by Charton-Charton (1982)
	ISOY800102	Normalized relative frequency of extended structure (Isogai et al., 1980)
	LEVM780102	Normalized frequency of beta-sheet, with weights (Levitt, 1978)
	LEVM780105	Normalized frequency of beta-sheet, unweighted (Levitt, 1978)
	LIFS790103	Conformational preference for antiparallel beta-strands (Lifson-Sander, 1979)
	MANP780101	Average surrounding hydrophobicity (Manavalan-Ponnuswamy, 1978)
	MAXF760102	Normalized frequency of extended structure (Maxfield-Scheraga, 1976)
	MEEJ810102	Retention coefficient in NaH2PO4 (Meek-Rossetti, 1981)
	NAKH900113	Ratio of average and computed composition (Nakashima et al., 1990)
	PALJ810105	Normalized frequency of turn from LG (Palau et al., 1981)
	PALJ810108	Normalized frequency of alpha-helix in alpha+beta class (Palau et al., 1981)
	PALJ810110	Normalized frequency of beta-sheet in all-beta class (Palau et al., 1981)
	PALJ810113	Normalized frequency of turn in all-alpha class (Palau et al., 1981)
	PONP800103	Average gain ratio in surrounding hydrophobicity (Ponnuswamy et al., 1980)
	PRAM900103	Relative frequency in beta-sheet (Prabhakaran, 1990)
	PTIO830102	Beta-coil equilibrium constant (Ptitsyn-Finkelstein, 1983)
	QIAN880102	Weights for alpha-helix at the window position of -5 (Qian-Sejnowski, 1988)
	QIAN880119	Weights for beta-sheet at the window position of -1 (Qian-Sejnowski, 1988)
	ROBB760109	Information measure for N-terminal turn (Robson-Suzuki, 1976)
	TANS770103	Normalized frequency of extended structure (Tanaka-Scheraga, 1977)
	WERD780102	Free energy change of epsilon(i) to epsilon(ex) (Wertz-Scheraga, 1978)
	YUTK870103	Activation Gibbs energy of unfolding, pH7.0 (Yutani et al., 1987)
	YUTK870104	Activation Gibbs energy of unfolding, pH9.0 (Yutani et al., 1987)
	AURR980101	Normalized positional residue frequency at helix termini N4'(AuroraRose, 1998)
	AURR980106	Normalized positional residue frequency at helix termini N1 (AuroraRose, 1998)
	AURR980109	Normalized positional residue frequency at helix termini N4 (AuroraRose, 1998)
	AURR980120	Normalized positional residue frequency at helix termini C4' (AuroraRose, 1998)
	NADH010104	Hydropathy scale based on self-information values in the two-state model (20\% accessibility) (Naderi-Manesh et al., 2001)
	KOEP990101	Alpha-helix propensity derived from designed sequences (Koehl-Levitt, 1999)

	FUKS010111 BASU050103 KARS160120	Entire chain composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-Nishikawa, 2001) Interactivity scale obtained by maximizing the mean of correlation coefficient over pairs of sequences sharing the TIM barrel fold (Bastolla et al., 2005) Weighted minimum eigenvalue based on the atomic numbers (KarkbaraKnisley, 2016)
TP53	BUNA790101	alpha-NH chemical shifts (Bundi-Wuthrich, 1979)
	CHAM830108	A parameter of charge transfer donor capability (Charton-Charton, 1983)
	DAWD720101	Size (Dawson, 1972)
	FASG760104	pK-N (Fasman, 1976)
	FASG760105	pK-C (Fasman, 1976)
	FAUJ880104	STERIMOL length of the side chain (Fauchere et al., 1988)
	FINA910102	Helix initiation parameter at posision $\mathrm{i}, \mathrm{i}+1, \mathrm{i}+2$ (Finkelstein et al., 1991)
	FINA910103	Helix termination parameter at posision $\mathrm{j}-2, \mathrm{j}-1, \mathrm{j}$ (Finkelstein et al., 1991)
	FINA910104	Helix termination parameter at posision $\mathrm{j}+1$ (Finkelstein et al., 1991)
	GARJ730101	Partition coefficient (Garel et al., 1973)
	GEIM800107	Beta-strand indices for alpha/beta-proteins (Geisow-Roberts, 1980)
	ISOY800107	Normalized relative frequency of double bend (Isogai et al., 1980)
	JANJ780101	Average accessible surface area (Janin et al., 1978)
	KHAG800101	The Kerr-constant increments (Khanarian-Moore, 1980)
	LEVM760107	van der Waals parameter epsilon (Levitt, 1976)
	NAGK730102	Normalized frequency of bata-structure (Nagano, 1973)
	NAKH900104	Normalized composition of mt-proteins (Nakashima et al., 1990)
	NAKH900106	Normalized composition from animal (Nakashima et al., 1990)
	NAKH900108	Normalized composition from fungi and plant (Nakashima et al., 1990)
	NAKH900112	Transmembrane regions of mt-proteins (Nakashima et al., 1990)
	OOBM770103	Long range non-bonded energy per atom (Oobatake-Ooi, 1977)
	PALJ810109	Normalized frequency of alpha-helix in alpha/beta class (Palau et al., 1981)
	PTIO830101	Helix-coil equilibrium constant (Ptitsyn-Finkelstein, 1983)
	QIAN880108	Weights for alpha-helix at the window position of 1 (Qian-Sejnowski, 1988)
	QIAN880136	Weights for coil at the window position of 3 (Qian-Sejnowski, 1988)
	RACS770103	Side chain orientational preference (Rackovsky-Scheraga, 1977)
	RACS820103	Average relative fractional occurrence in AL(i) (Rackovsky-Scheraga, 1982)
	RACS820114	Value of theta(i-1) (Rackovsky-Scheraga, 1982)
	ROBB760104	Information measure for C-terminal helix (Robson-Suzuki, 1976)
	TANS770105	Normalized frequency of chain reversal S (Tanaka-Scheraga, 1977)
	TANS770108	Normalized frequency of zeta R (Tanaka-Scheraga, 1977)
	TANS770109	Normalized frequency of coil (Tanaka-Scheraga, 1977)
	WERD780103	Free energy change of alpha(Ri) to alpha(Rh) (Wertz-Scheraga, 1978)
	ZASB820101	Dependence of partition coefficient on ionic strength (Zaslavsky et al., 1982)
	AURR980106	Normalized positional residue frequency at helix termini N1 (AuroraRose, 1998)
	AURR980107	Normalized positional residue frequency at helix termini N2 (AuroraRose, 1998)
	ONEK900101	Delta G values for the peptides extrapolated to 0 M urea (O'NeilDeGrado, 1990)
	ONEK900102	Helix formation parameters (delta delta G) (O'Neil-DeGrado, 1990)
	BLAM930101	Alpha helix propensity of position 44 in T4 lysozyme (Blaber et al., 1993)
	TSAJ990101	Volumes including the crystallographic waters using the ProtOr (Tsai et al., 1999)
	TSAJ990102	Volumes not including the crystallographic waters using the ProtOr (Tsai et al., 1999)
	PUNT030101	Knowledge-based membrane-propensity scale from 1D_Helix in MPtopo databases (Punta-Maritan, 2003)
	GEOR030105	Linker propensity from small dataset (linker length is less than six

	GEOR030109	residues) (George-Heringa, 2003) Linker propensity from non-helical (annotated by DSSP) dataset (George- Heringa, 2003) HARY940101 Mean volumes of residues buried in protein interiors (Harpaz et al., 1994) GUYH850105 CORJ870104 Apparent partition energies calculated from Chothia index (Guy, 1985) KARS160106 KARS160112
PRILS index (Cornette et al., 1987) Radius (minimum eccentricity) (Karkbara-Knisley, 2016) Second smallest eigenvalue of the Laplacian matrix of the graph (Karkbara-Knisley, 2016)		

