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Abstract: 

 
Traditionally, energy landscape studies of chemical systems deal with an isolated system with 

no interaction with the environment except possibly non-zero pressure and temperature. This changes 

drastically, if we consider materials under extreme conditions, since now the interaction with the 

environment plays a central role. In this work, we present extensions and generalizations of the energy 

landscape paradigm to chemical systems that strongly interact with their environments. The focus is 

on the general concepts involved, where we discuss the way to incorporate general external fields, 

e.g., mechanical stresses, electric and magnetic fields, and fluxes, e.g., electric and thermal currents, 

and analyze the issue of time-dependent energy landscapes. Finally, possible applications of energy 

landscape concepts in a variety of chemical and physical systems in strong contact with the 

environment are discussed, and first examples of landscape studies of materials under extreme 

conditions are given. 

 

Keywords: energy  landscapes,  extreme  pressures,  high  temperature,  structure prediction, 
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1. Introduction 

 

Materials found in nature and developed for technological applications are usually 

observed and employed at so-called standard conditions: room temperature, the pressure of 

one atmosphere, etc. However, very often the processes needed for these materials to come 

into existence are quite extreme,[1] e.g., high pressures and/or high temperatures,[2-5] and 

similarly the materials might be exposed to extreme conditions during their applications, e.g., 

high magnetic or electric fields,[6-10] large currents,[11,12] aggressive chemical 

environments[13,14], high fluxes of radiation,[15,16] or high temperatures and 

pressures.[17,18] Such "extreme" conditions can occur not only in situations with exposure to 

highly energetic processes as mentioned above but also at the other end of the energy 

spectrum in cases of an (effective) reduction of a bulk material to lower dimensions such as 

monolayers,[19,20] quasi-one-dimensional systems[21,22] or sub-monolayer molecular 

structures on substrates,[23-25] not to mention three-dimensional materials with an extremely 

low density such as metal-organic frameworks.[26,27] Here, too, our standard intuition 

trained in the study of bulk materials can fail, and new concepts and methods - both 

experimental and theoretical ones - will be needed. However, we do not include the energy 

landscapes of such systems in this overview, since they will be discussed elsewhere.[28] 

Similarly, we are not discussing single molecules or clusters under extreme conditions,[29] 

such as the so-called Coulomb explosion [30], current flows through single molecules 

[31,32], or high-pressure studies of single molecules, [33] although the general concepts 

presented in this work will also be relevant for such systems. 

Trying to resolve the details of the thermodynamic processes involved under extreme 

conditions, including the existence of thermodynamically stable and metastable materials and 

chemical compounds and their synthesis - in a controlled fashion if feasible -, or of the 

morphology and stability of the materials in equilibrium and non-equilibrium situations, and 

their physical and chemical properties in general, constitutes a great challenge. From a 

theoretical point of view, combinations of molecular dynamics and Monte Carlo simulations 
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with finite element modeling,[34,35] analytical phenomenological models,[36,37] and 

empirical and ab initio computations of equilibrium properties,[38] have been employed to 

investigate specific features of systems and the processes taking place in a given phase and/or 

structure, at extreme conditions.[39-41] In recent decades, there has been added a more 

holistic point of view,[42-48]  where one investigates the energy landscape of the chemical 

system on a global level in order to explore the full range of possible stable and metastable 

phases the system can exhibit for, e.g., a given pressure,[49-51] to analyze their stability 

against transformations as function of pressure and temperature,[52] and to study the system's 

reactions to perturbations and its relaxation to equilibrium. This approach has proven to be 

highly fruitful and has led to the prediction of new not-yet synthesized compounds and 

modifications[53-56] and high-pressure structures[57,58] up to the prediction of phase 

diagrams as function of temperature, pressure, and composition.[46,52,59-62] 

Typically, such studies assumed that the system was isolated from the environment, 

apart from a given constant pressure and temperature. In the case of materials under extreme 

conditions, such isolation is no longer true - and usually not appropriate even for simple 

models -, unless the energy landscape were to include the atoms that make up the whole 

experimental apparatus. Instead, we have to add the environment of the material in some 

reasonably efficient fashion, where extreme conditions usually are only a special instance of 

the general type of environment added to the system of interest. The impact of the 

environment can make itself felt through applied external fields such as pressure, 

electromagnetic fields, mechanical stresses, etc., or in the presence of various kinds of 

currents, such as electric or thermal ones, moving through the material in a steady-state 

fashion. Other very important aspects of the interaction with the environment - both for strong 

and weak interactions - are the externally applied temperature, and furthermore the time 

variation or time evolution of the environment, and their effects on the material. Such 

interactions can result in new (meta)stable equilibrium phases and equilibrium properties of 

the material, a steady-state configuration of the material, and/or non-equilibrium behavior of 

the system. In principle, there can even be a coupling between the material and the 

environment in the sense that the change in the material can affect the properties of the 

environment in the zone near the material; an example might be the formation of protective 

surface layers of the material, which prevents or slows down further corrosion. 

It is thus an interesting question, how and to what extent energy landscape concepts 

can also be applied to materials under extreme conditions. In this overview, we are going to 

address this issue, discussing both general concepts and first applications.  

 

 

2. Energy landscape concepts 

 

2.1 General cost functions and exploration methods 

 

Energy landscapes in chemical systems are a special case of so-called cost functions, 

which are studied in a large number of fields ranging from mathematics,[63-65] physics,[66-

68] chemistry,[43,44,69] over various fields of engineering,[65,70] to the social sciences and 

economics.[71-73]  
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a)         

b)                  

 

Figure 1: a) Potential energy landscape made by nature (near Disentis in Switzerland). Note 

that to reach the highest snow-capped mountains on the left, you need to cross the deep Rhine 

valley in-between. b) Potential energy landscape made by man (downtown Chicago). Note 

that this is like a fitness landscape for managers - the higher the office, the fitter the manager, 

in many ways. 
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Quite generally, a cost function 𝐶: 𝑆 → 𝑅 is a real function that maps configurations 

�⃗� ∈ 𝑆 (also called (micro)states or solutions, depending on the field of application) to real 

numbers 𝐶(�⃗�) ∈ 𝑅. In the case of a molecule consisting of 𝑁 atoms, the configuration space 

𝑆 would be equal to 𝑅3𝑁, i.e., each possible arrangement of the atoms in the molecule would 

correspond to a point �⃗� = (�⃗�1, . . . , �⃗�𝑁) ∈ 𝑅3𝑁, where �⃗�𝑖 are the position vectors of atoms 𝑖 in 

𝑅3.
1
 Similarly, if we want to study the behavior of a set of elementary magnets that each can 

only point up or down along, e.g., the 𝑧-axis, then each point in configuration space would 

correspond to a possible arrangement of orientations of the magnets �⃗�𝑖, �⃗� = (�⃗�1, . . . , �⃗�𝑁) ∈
(𝑍2)𝑁, where 𝑍2 = {−1, +1} is the set of possible orientations of a given spin. Clearly, the set 

of states 𝑆 of the simple magnetic system is a discrete one, while, for the molecule, 𝑆 is a 

continuous set of configurations. The cost function 𝐶(�⃗�) can represent a real economic cost, 

the value of a combinatorial optimization problem,[63-65] the difference between computed 

and measured data,[69,74] or the potential energy of an arrangement of atoms, where the last 

two types of costs are of particular interest in materials. 

In order for the cost function and the state space to become a landscape, we need to 

define a neighborhood relation between the states, such that we can associate a neighborhood 

to each state, �⃗� → ℕ(�⃗�). In physical or chemical systems like a molecule or the magnet 

system mentioned above, this neighborhood tells us, which states are (infinitesimally) close to 

the current state, and thus how the system can evolve on a given time scale. If the set 𝑆 is a 

subset of, e.g., 𝑅𝑛 (as would be the case for the molecule), then we often employ the standard 

neighborhood relation in 𝑅𝑛, i.e., the neighbors of a configuration are all the atom 

arrangements that differ from the present configuration by only (infinitesimally) small shifts 

in the atom positions. Similarly, if 𝑆 consists of, e.g., a finite number of discrete states, then a 

sensible definition of the neighbors should be consistent with the time evolution algorithm, 

i.e., the moveclass represents our model of the system's dynamics.
2
 But if the cost function 

refers to, e.g., an optimization problem such as the traveling salesman problem (TSP) of 

finding the optimal route among a set of cities, then the neighborhood describes the way our 

search algorithm moves in the state space of the problem, and we usually call the 

neighborhood relation the moveclass of the algorithm. 

Configuration space, moveclass and cost function together define the cost function 

landscape; for discrete spaces this is sometimes called a metagraph.[70]  

Once the cost function landscape has been constructed, we are particularly interested 

in the evolution of the system, i.e., its movement in configuration space. Such an evolution 

can correspond to the changes that occur in a physical or chemical system as function of time 

according to the laws of physics; in chemical systems, the existence of stable states 

corresponding to distinct regions on the landscape dynamically separated from the rest of 

configuration space by barriers is of special interest. In general cost function problems, 

evolution usually refers to the progress of a given global exploration or optimization 

algorithm, but it can also refer to the time evolution, e.g., of the fitness of an organism, or to 

the populations dynamics on a socio-economic landscape.  

In order to analyze and model such an evolution, the landscape is globally explored 

using various computational methods, c.f., e.g. [43,75] and references cited therein. This 

results in a "complete" description of the landscape in terms of static properties such as local 

                                                 
1
 The configuration space is also called the state space, or sometimes the solution space if we consider the 

microstates as the feasible solutions of a cost function optimization problem. 
2
 For example, a neighbor state of a current state in the magnet system might differ from the current state by only 

one or two magnets having flipped their orientation, as this would appear to be a good approximation of the true 

dynamics. 
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minima and maxima, saddle points, including their curvatures, characteristic regions
3
, 

together with the probability flows between various regions of configuration space,[77-79] 

i.e., the probabilities ℘𝐴𝐵(𝑡𝑠𝑡𝑒𝑝) to reach a certain region 𝐴 ⊂ 𝑆 from region 𝐵 ⊂ 𝑆 during 

the time step 𝑡𝑠𝑡𝑒𝑝. Here, 𝑡𝑠𝑡𝑒𝑝 corresponds to both the time between two measurements of the 

real system, and to the length of the exploratory simulations used to measure the transition 

probabilities between the two regions 𝐴 and 𝐵. Of course, these flows are completely 

determined once the landscape and its dynamics, such as the (deterministic or stochastic) 

exploration / evolution algorithm we employ to study the landscape, have been given.
4
 

Such regions of interest are often basins around local minima or locally ergodic 

regions (for a given observational time scale; see below) that are separated by generalized 

barriers on the landscape, which are extracted from the probability flows and incorporate 

entropic and kinetic features in addition to purely energetic aspects.[81] Based on this 

information, one can actually optimize the optimization search procedure or control the time 

evolution of the system, such that one will reach the global minimum or any other prescribed 

region of the landscape (perhaps corresponding to a desired metastable compound), in the 

most efficient fashion with the highest probability for a given (or randomly chosen) starting 

point on the landscape[82-84].
5
  

We note that in this description, the landscape appears as the constant playing field on 

which the time evolution of the chemical system takes place; however, in many situations - 

both in physical/chemical systems and in general cost function problems -, the cost function, 

and also the set of states 𝑆, might vary as a function of time.
6
 Clearly, this can have important 

effects on how we employ energy landscapes in practice, to address physical and chemical 

questions or typical cost function problems. This is discussed in more detail below in section 

3.5. 

 

 

2.2 Application to chemical systems isolated from the environment 

 

In the case of a chemical system without any applied external fields or other contact 

with the environment, i.e., zero pressure 𝑝 = 0, no magnetic or electric fields �⃗⃗� = 0, �⃗⃗� = 0, 

etc., the configuration space is usually given by all the possible arrangements of the 𝑁 atoms 

of the system in space, such that each point corresponds to a vector �⃗� = (�⃗�1, . . . , �⃗�𝑁) in 𝑅3𝑁 

with �⃗�𝑖 ∈ 𝑅3 as the coordinates of atom 𝑖. As energy function serves the potential energy of 

                                                 
3
 A characteristic region is defined as the set of all microstates, from which one reaches the same distribution of 

local minima when performing many stochastic quenches.[76] In particular, this allows us to assign microstates 

with energies higher than those of various saddle points to minima basin states (this can refer to one minimum or 

a group of structurally related minima) or transition states (two or more structurally distinct minima are reached 

by the quenches from the same microstate). 
4
 One should also note that studies of the behavior of the phase space trajectories obtained by solving Newton's 

equations in the so-called phase space where the microstates are defined by the position and momentum vectors 

of the N atoms (�⃗�1, . . . , �⃗�𝑁; 𝑝1, . . . , 𝑝𝑁) ∈ 𝑅6𝑁, can result in valuable insights [80] beyond the standard molecular 

dynamics results, e.g., illuminating the importance of entropic and kinetic aspects of the generalized barriers on 

the landscape, in addition to the more standard energetic ones. 
5
 From a mathematical point of view, this optimization of the time evolution of the system constitutes an optimal 

control problem, as one encounters in applications of finite-time thermodynamics to chemical systems, where 

one attempts to maximize the output of a chemical process or to minimize the entropy production, if the process 

has to be finished within a finite time span.[85-87]  
6
 The variation of the cost function can easily be imagined as, e.g., building, repairing or blocking roads between 

cities in the TSP problem and thus increasing or decreasing the length of a route, or the time the route requires, 

throughout the day or over a year. But the set of states (= set of feasible routes) can also change by 

adding/removing/substituting cities along the route, or by permanently removing or adding roads between two 

cities. Note that the removal of a road between two cities can be effectively achieved by assigning such a road an 

infinite length - in that case, the route is still "feasible" but "infinitely" unfavorable. 
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the system 𝐸𝑝𝑜𝑡(�⃗�), which is either evaluated via some empirical potential or as the 

electronic ground state energy on ab initio level computed, e.g., using DFT or the Hartree-

Fock approximation.
7
 In the case of solids, where the number of particles is on the order of 

Avogadro's number 𝑁𝐴𝑣, one usually ignores surface effects and reduces the number of 

degrees of freedom by assuming periodic boundary conditions (with variable size and shape 

of the periodic cell), such that the configuration is defined by 

�⃗� = (�⃗�1, . . . , �⃗�𝑁𝑐𝑒𝑙𝑙
; 𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾),  where 𝑁𝑐𝑒𝑙𝑙 is the number of atoms in the periodic cell, 

and �⃗�𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) with 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 ∈ [0,1] are the fractional coordinates of the atom 𝑖 inside 

the cell, and (𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾) are the variable cell parameters. Since 𝑥𝑖 = 1 corresponds to 

𝑥𝑖 = 0 (and analogously for 𝑦𝑖, 𝑧𝑖) because of the periodic boundary conditions, and, 

furthermore, many choices of the cell parameters correspond to the same infinite crystal, the 

topology of this landscape is the one of a complicated high-dimensional torus. 

If we want to describe the time evolution of the system or study the stability of 

metastable phases, it is important to keep in mind that a physical or chemical system has a 

"natural" or "inherent" time evolution based on the laws of physics, which depends on, and 

thus is prescribed by, the initial state, the (effective) interactions between the constituents of 

the systems (atoms, spins, ...), and the applied external forces and thermodynamic boundary 

conditions, where the external parameters can vary with time, of course. In such a case, we 

have a naturally defined set of states and neighborhoods, as function of evolution time, which 

cannot be modified, in principle. In order to ensure that the moveclass corresponds to the 

physical time evolution, we only allow very small changes in the atom positions or the cell 

parameters during each move, as mentioned above.
8
 This requirement of physical realism also 

presents us with a natural set of properties and features of the system's landscape which we 

want to determine via various exploration algorithms. To identify these, we note that our 

physical measurements in the experiment always depend on the observational time scales 𝑡𝑜𝑏𝑠 

over which the measurements are performed, on the values of the external parameters, and on 

the initial state of the system, unless we can assume that the system is in (local) equilibrium. 

Here, we remark upon the importance of keeping apart the features of the true landscape of 

the real physical system, and those aspects accessible in model systems when using 

simulation algorithms, as far as their time evolution is concerned. 

 

On the other hand, for global optimizations in configuration spaces, e.g., if we want to 

find the local minima of the potential energy, or the atom configuration whose diffractogram 

agrees best with the measured data, we frequently include additional (unphysical) moves such 

as atom exchanges, local scrambling of atoms etc., which occur in real systems on much 

longer time scales but are very efficient for jumping among major basins of the energy 

landscape. Thus, the neighborhood of a configuration �⃗� = (�⃗�1, . . . , �⃗�𝑁) contains states 

�⃗⃗� = (�⃗�1, . . . , �⃗�𝑁) that are a (large) finite distance away from the current configuration if 

measured by a typical distance metric 𝐷(�⃗�, �⃗⃗�) = ∑ (�⃗�𝑘 − �⃗�𝑘)2𝑁
𝑘=1 . Therefore, the topology of 

                                                 
7
 In this notation, we are ignoring the spin degrees of freedom associated with the atoms/ions, which need to be 

included, of course, in the more general case, e.g., for non-vanishing magnetic fields. Furthermore, we assume 

that the Born-Oppenheimer approximation can be used, to separate the electronic from the nuclear degrees of 

freedom. 
8
 Note that if we model the solid via a reduced set of coordinates with a small periodically repeated simulation 

cell, then we can only describe a very limited type of evolution. For example, typical nucleation and growth 

processes are only accessible if we use very large periodic cells, and, similarly, surface reactions or 

transformations cannot be modelled (unless we replace the 3D solid by a 2D slab). 
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the configuration space becomes highly complex when seen through the eyes of the global 

optimization algorithm.
9
  

Having considered the basic concepts of a static landscape in isolation from the 

environment, in the following section we turn to the modifications needed and the effects 

generated by including the environment into the description and analysis of the landscape of a 

chemical system. Here, we note that one will always prefer a minimalistic approach when 

dealing with and accounting for the effects of the environment. Thus, instead of including the 

atoms of the device that generates, e.g., the high pressure or the electric field, or those that 

represent the interface through which a constant temperature inside the material is established, 

one modifies the cost function by adding simple terms to the energy that reflect the 

thermodynamic (boundary) conditions due to the environment. However, in many situations, 

it will be necessary to include the contact with the environment explicitly in the configuration 

space of the energy landscape, e.g., when heating a substrate while growing a film at a high 

deposition rate on its surface,[88] because otherwise important features of the time evolution 

of the system would be lost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
9
 As a consequence, most global optimization algorithms employed in, e.g., structure prediction in chemistry, are 

unsuitable for obtaining information about the barriers that surround and stabilize the predicted metastable 

compounds. 
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3. Energy landscape of chemical systems in contact with the environment 

 

3.1 Extensions of the potential energy landscape in the presence of external fields 

 

When applying external fields or other related boundary conditions representing the 

environment, the energy landscape needs to be modified appropriately. Three different levels 

are to be distinguished: a) The additional quantities are constant in time with zero flux of any 

quantity, i.e., the system is in thermodynamic equilibrium with respect to the applied field. b) 

The fields are constant in time but induce non-vanishing stationary fluxes of some quantity, 

i.e., the material is in a steady-state as far as the flows induced by the externally imposed 

fields are concerned. c) The external fields are variable in time, usually implying time-varying 

fluxes of some quantity, and thus the system most likely is in a non-equilibrium state.
10

 Note 

that in all the necessary extensions of the original potential energy landscape, we will be 

guided to a considerable extent by thermodynamic considerations. Due to its conceptual 

complexity, level c) will be discussed separately in section 3.5. 

 

 

3.1.1 External stresses 

 

The most straightforward case is the application of a constant (mechanical) pressure. 

In this case, the cost function of interest is the so-called "potential enthalpy", which is defined 

as 𝐻𝑝𝑜𝑡(�⃗�) = 𝐸𝑝𝑜𝑡(�⃗�) + 𝑝𝑉(�⃗�).[42,43] Here, we are inspired by the Legendre 

transformation of the energy to the enthalpy in thermodynamics, where the pressure 𝑝 = −
𝜕𝐸

𝜕𝑉
 

replaces the volume 𝑉 as the independent thermodynamic variable, and the enthalpy 𝐻 = 𝐸 +
𝑝𝑉 replaces the energy 𝐸 as the thermodynamic potential.[91] Of course, in statistical 

mechanics and thermodynamics, 𝐸 and 𝑉 are now functions of pressure and we have 

performed the ensemble average over all microstates �⃗�. But in the case of the energy 

landscape, the potential enthalpy function, like the potential energy before, is a function of �⃗�, 

and 𝑝 is just an external parameter. The local minima on this potential enthalpy landscape are 

those modifications of the chemical system, which are favored at a prescribed pressure 𝑝. 

Note that we can generate a whole family of potential enthalpy landscapes by modifying the 

pressure, and analyze how they slowly change as a function of pressure (c.f. Fig. 2). 

 

 

                                                 
10

 In the non-equilibrium situations - both full non-equilibrium and steady state -, we also need to be concerned 

with how the field penetrates into the material. The frequently implicit assumption that the field is present 

everywhere with constant strength does not hold in general - just recall the screening of the electric field by a 

metal.[89] Another example would be the time scale on which a variation of an external temperature will 

establish itself throughout the material, or heat generated by, e.g., chemical reactions or phase transformations, 

will spread through the system. Other examples are, e.g., the heat release during the deposition of atoms on a 

cold surface with finite thermal conductivity, leading to a "hot" surface layer that allows some annealing at an 

effective temperature much higher than the one inside the substrate,[88], or the billions of years needed for the 

heat stored and generated inside the Earth to reach the surface (according to an estimate of the cooling rate of 

Earth of ca. 5 - 10 K/10
8
 years) [90]. 
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Figure 2: Schematic potential enthalpy landscapes 𝐻𝑝𝑜𝑡(�⃗�; 𝑝) as function of pressure p. Note 

how the potential enthalpy of the corresponding ground states increases with pressure, due to 

the presence of the 𝑝𝑉 term in the potential enthalpy, 𝐻𝑝𝑜𝑡(�⃗�; 𝑝) = 𝐸𝑝𝑜𝑡(�⃗�) + 𝑝𝑉(�⃗�) . 

 

The constant pressure is a special instance of applying an external stress field 𝜎 to the 

chemical system. Viewed as a macroscopic solid, the system will adjust its macroscopic shape 

according to the applied stress, e.g., a shear force or an uni-axial pressure gradient, within and 

beyond the elastic approximation; especially for large stresses, plastic deformations will 

occur. While this effect is important in its own right, we can only model this within the 

energy landscape picture if we consider all 𝑂(𝑁𝐴𝑣) atoms in the solid, i.e., by treating a 𝑁𝐴𝑣-

atom configuration of the macroscopic solid as a point in 𝑅3𝑁𝐴𝑣 . As long as we employ the 

usual periodic cell model, we can only deal with the second effect of the applied stress, i.e., 

the deformation of the periodic cell
11

 without additional changes in the macroscopic shape of 

the solid.
12

 In this case, we introduce a local deformation term 𝜎𝑢(�⃗�) to the generalized 

potential energy function, where 𝑢(�⃗�) is the macroscopic deformation tensor of the material 

translated into the deformation of the periodic cell.[92,93] In general, we might need to use 

the continuum approximation in the case of spatially varying stress fields and integrate the 

energy term 𝜎(𝑟)𝑢(𝑟; �⃗�) over the whole macroscopic solid (𝑟 labels the material points in the 

continuum approximation [94]). We also note that when talking about external pressure (and 

stresses), one usually thinks of mechanical pressure 𝑝𝑚𝑒𝑐ℎ applied at the surface of the 

material, but other sources of pressure are also common, e.g., due to electromagnetic fields or 

intense laser radiation.
13

 

                                                 
11

 Note that the system could try to minimize the energy by massively deforming the simulation cell, thus 

mimicking the macroscopic deformation of the material. To avoid such spurious low-energy minima (which - 

due to the periodicity of the system - represent the same infinite crystal by being just different approximants of 

the same crystal), we would restrict the allowed anisotropy and flatness of the simulation cell. 
12

 As far as elasticity theory is concerned, we are essentially staying in the "elastic" region without allowing for 

macroscopic plastic deformations, even though the applied stresses might go far beyond those for which the 

elastic approximation is appropriate. Here, the "elastic" behavior does not need to be linear, and can even 

involve a complete rearrangement of the atoms inside the periodic cell including a transformation to a different 

crystalline modification as far as the local minima are concerned. The importance is that the changes are 

restricted to the periodic cell containing only a small fixed number of atoms. 
13

 In this context, we note that for systems with a finite number of atoms that are exposed to an external pressure, 

it is not always clear how the volume 𝑉(�⃗�) at microstate �⃗� is supposed to be evaluated. If the atoms form a 

H (X;p)pot

Low-pressure 
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High-pressure 
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3.1.2 External electric and magnetic fields  

 

An analogous procedure yields extensions of the energy landscape for the case of 

magnetic and electric fields. Concerning the electric and magnetic fields, several cases need 

to be distinguished, depending on the level of model description we employ: i) direct 

interaction of the external fields with atom level degrees of freedom, specifically the charges 

of the nuclei or ions and of the electrons; ii) direct interaction of the fields with electric and 

magnetic dipole moments of the atoms/nuclei/ions/electrons, if such (permanent) degrees of 

freedom are present in the system - depending on the level on which we model the microstates 

of the system, this might also include permanent dipole moments of molecules; iii) dipole 

moments present on the molecular or material point level
14

; in particular, induced electric and 

magnetic moments, especially for strong electric and magnetic fields; and iv) the energy 

density of the applied electromagnetic field. 

i) The fact that a chemical system is composed of N atoms i that each consists of a 

positively charged nucleus with charge 𝑞𝑖 = 𝑍𝑖𝑒 (𝑒 = |𝑞𝑒𝑙| > 0) and 𝑍𝑖 negatively charged 

electrons (𝑞𝑒𝑙 = −𝑒), has, in principle, dramatic consequences in the presence of a constant 

electric field �⃗⃗� = 𝐸0𝑒𝑥 with 𝐸0 > 0. The global minimum configuration of the 

nuclei+electrons system would involve a total separation of nuclei and electrons, with all the 

nuclei located at 𝑥 = +∞ and all the electrons at 𝑥 = −∞ , regardless of the strength of the 

electric field (!), since for each nucleus i and electron j we need to add a term −𝑍𝑖𝑒�⃗⃗� ∙ �⃗⃗�𝑖 and 

𝑒�⃗⃗� ∙ 𝑟𝑗 to the potential energy
15

. Here, we note that the microstates of the system would be 

given as �⃗� = (�⃗⃗�1, . . . , �⃗⃗�𝑁; 𝑟1, . . . , 𝑟𝑁𝑒𝑙
) listing the "positions" �⃗⃗�𝑖 of the N nuclei and the 

"positions" 𝑟𝑗 of the 𝑁𝑒𝑙 = ∑ 𝑍𝑖
𝑁
𝑖=1  electrons, i.e., 𝐸𝑝𝑜𝑡(�⃗�; �⃗⃗�) = 𝐸𝑝𝑜𝑡(�⃗�) + ∑ (−𝑍𝑖𝑒�⃗⃗� ∙𝑁

𝑖=1

�⃗⃗�𝑖) + ∑ 𝑒�⃗⃗� ∙ 𝑟𝑗
𝑁𝑒𝑙
𝑗=1  .

16
  

In practice, we usually do not have to deal with such an infinitely extended field. More 

commonly, we study a finite piece of material, such as a molecule or a crystal, that is placed 

inside a capacitor (with the plus-plate located at 𝑥 = 0 and the minus-plate at 𝑥 = 𝑑, with a 

voltage difference between the two plates of 𝑉𝑐 = 𝐸0𝑑, and a constant electric field between 

the two plates �⃗⃗� = 𝐸0𝑒𝑥 (and zero outside the capacitor). Now, as long as 𝑒𝑉𝑐 < 𝑊, where W 

is the work function of the material, i.e., the amount of energy needed to remove an electron 

from the material, the electrons will remain inside the material, and the electric field 

contribution to the total potential energy will not dominate the energy landscape of the 

material. At least for insulators, this often means that we can try to include the electric field 

directly into the quantum mechanical calculation of the energy of a given atom configuration, 

and thus return to microstates that only refer to the atom positions. 

However, such a constant electric field will influence the electron distribution inside 

the material, of course. For insulators, this can lead to local induced dipoles, and in the case of 

a metal, it can result in a macroscopic change in the electron distribution - inducing a 

                                                                                                                                                         
more or less cohesive cluster, for which an approximate surface can be defined via a convex-hull construction, 

then the volume enclosed by this surface can be identified with the volume of the system. If this is not possible, 

an alternative is to evaluate the term 𝑝𝑉(�⃗�) via the application of an effective pressure-like force on the 

individual atoms, where this force is proportional to the applied pressure and is directed towards to center of 

mass of the finite set of atoms. 
14

 In principle, we also need to consider higher moments such as quadrupole moments, etc. 
15

 The zero of the potential energy connected to the electric field is located at the origin, 𝑥 = 0, w.l.o.g. 
16

 Of course, in principle, we need to deal with the electrons and nuclei on a quantum mechanical level, and thus 

find the solution of the Schrödinger equation for an electron/nucleus modeled as a point charge in an infinitely 

extended constant electric field. However, this would not change the discussion of the ground state of the 

system, i.e., we would again obtain a separation of positive and negative charges. 
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macroscopic electric dipole inside the material that shields the external field - or, 

alternatively, in a constant current through the material. The latter requires the presence of 

external contacts to the material such that both a source and a sink for the electric current are 

available. Usually, this has only indirect effects on the spatial arrangement of the atoms, but it 

can change the potential energy of the atom configurations such that high- and low-electric 

field phases and atom arrangements will exist, and thus structural distortions or phase 

transformations can occur; examples are piezo-electricity or ferro-electric phase transitions 

that involve structural re-arrangements.[95] 

An important special case is the presence of mobile ions, where not only the electrons 

but also the atoms can be so easily moved even for moderate electric fields, that ion currents 

can be caused by the presence of the electric field. In model energy landscapes where we 

employ cations and anions as the basic entities instead of the atoms, such individual charges 

that directly interact with the electric field would appear, e.g., when one uses empirical energy 

functions that include ions instead of atoms, or allow charge transfer between the atoms. In 

that case, we need to distinguish two different situations. 

Firstly, the chemical system consists of a finite set of atoms, such as a molecule or 

cluster of N atoms. In this case, we can write down a term −𝑞𝑖�⃗⃗� ∙ �⃗⃗�𝑖 for every ion i with 

charge 𝑞𝑖 in the energy function, where �⃗⃗�𝑖 is the distance of the ion from the center of mass of 

the cluster, analogous to the case of the nuclei and electrons, favoring the movement of every 

ion towards 𝑥 = ±∞. Again, one would want to exclude this effect by restricting the size of 

the volume that can be occupied by the ions belonging to the cluster; e.g., the ions are only 

allowed inside a sphere with some maximal diameter 𝐷𝑚𝑎𝑥 ≤ 2𝑁𝑑𝑖𝑜𝑛, where 𝑑𝑖𝑜𝑛 is the 

diameter of an ion in the cluster.
17

 As long as ∑ |𝑞𝑖�⃗⃗�|𝐷𝑚𝑎𝑥𝑖  does not exceed the cohesive 

energy of the cluster without electric field applied, we can expect that the low-energy isomers 

with a diameter 𝑑𝑐𝑙𝑢𝑠𝑡 < 𝐷𝑚𝑎𝑥 will still be the relevant minima of the system. For fields 

where ∑ |𝑞𝑖�⃗⃗�|𝑑𝑐𝑙𝑢𝑠𝑡𝑖  is larger than the cluster energy, we would expect a break-up of the 

molecule to occur, similar to the case of a Coulomb explosion that takes place when too much 

charge is placed on a small molecule or cluster [30].  

The second case is the one of an infinite ionic solid when we employ as description a 

variable unit cell containing only a small number 𝑁𝑎𝑡𝑜𝑚 of atoms, with periodic boundary 

conditions, as a periodic approximant to the true infinite solid.
18

 Again, the electric field can 

couple directly to the charges of the ions (due to the use of an empirical model potential for 

the ion-ion interactions). Now, we can try to deal with the situation by assuming that the 

periodic cell and its content play the role of the cluster in the finite system case a) above. We 

again use the same approach of trying to estimate a maximal allowed cell size (with 𝑁𝑎𝑡𝑜𝑚 

atoms), where we use the expression −𝑞𝑖�⃗⃗� ∙ �⃗⃗�𝑖, where now �⃗⃗�𝑖 is the distance of ion i from the 

center of the periodic unit cell in Cartesian coordinates, as the interaction term of the ions 

with the electric field in the energy function.
19

 Due to the periodicity of the system, the 

potential energy contribution of the electric field takes on a "saw-tooth"-like shape, since each 

repeated cell resets the zero of the potential. As a consequence, the effect of the electric field 

becomes larger if we go to larger simulation cells containing proportionally more atoms. 

Especially for large fields, this will make itself felt in the ranking of the energies of the 

                                                 
17

 We encounter similar complications when studying a single molecule or cluster in a simulation cell of infinite 

size: except at 𝑇 = 0, the statistically preferred state would consist of isolated atoms randomly spread out over 

the infinite available space. Again, one addresses this problem by restricting the atoms to be inside a sphere of 

finite diameter 𝐷𝑚𝑎𝑥 when performing global explorations of the landscape. 
18

 Analogous considerations would apply when modeling the solid as nuclei+electrons instead of cations+anions. 
19

 In order to avoid the simulation cell to maximize the electrostatic energy by becoming extremely anisotropic 

and flat, one would need to enforce limits on the shape of the periodic simulation cell, similar to the case of an 

applied mechanical shear stress field. 
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equivalent minimum structures representing the same infinite crystal, when they are computed 

for different sizes of periodic simulation cells.  

We note that one also needs to avoid double-counting the energy, e.g., if the electric or 

magnetic field contribution is already included in the ab initio energy calculation.
20

 

Furthermore, even if no ionic charges are present in the system and we only deal with atom 

centered dipole moments in an insulator, very large fields might remove the valence electrons 

from the atom, effectively destroying the localized dipole moments and creating an ion-

electron plasma in the system, or, at least, switching the system from an insulating to a 

conducting state for the same configuration �⃗�. 

ii) In the next case, the presence of permanent atomic or molecular electric or 

magnetic dipoles, we first need to compute the (permanent) magnetization �⃗⃗⃗�(�⃗�) =

�⃗⃗⃗�𝑝𝑒𝑟𝑚(�⃗�) or electric polarization �⃗⃗�(�⃗�) = �⃗⃗�𝑝𝑒𝑟𝑚(�⃗�) of the system associated with a 

microstate �⃗�. In the most straightforward case, this can be done by computing or employing 

given atomic electric and magnetic dipole moments �⃗�𝑖 and �⃗⃗⃗�𝑖, respectively, such that 

�⃗⃗�𝑝𝑒𝑟𝑚(�⃗�) = ∑ �⃗�𝑖𝑖  and �⃗⃗⃗�𝑝𝑒𝑟𝑚(�⃗�) = ∑ �⃗⃗⃗�𝑖𝑖  .
21

 Alternatively, (relativistic) spin-polarized 

energy calculations can provide a split of electronic bands via spin-orbit coupling for the 

given atom configuration, which again allows us to couple the magnetic field to the spin of 

the quasi-electrons occupying the bands for a given atom configuration �⃗�. However, if we 

cannot associate the moments with individual atoms, and thus straightforwardly with a single 

microstate, i.e., atom arrangement, it may be necessary to compute the moments in the 

continuum approximation.[89] Analogously to the application of pressure, we are now guided 

by thermodynamics in adding terms −�⃗⃗⃗�(�⃗�)�⃗⃗� and −�⃗⃗�(�⃗�)�⃗⃗� to the potential energy or 

enthalpy, resulting in a cost function 𝐶(�⃗�) = 𝐸𝑝𝑜𝑡(�⃗�) + 𝑝𝑉(�⃗�) − �⃗⃗⃗�(�⃗�)�⃗⃗� − �⃗⃗�(�⃗�)�⃗⃗�.
22

  

iii) If such a coupling to permanent (atom level) dipoles is not present, this term linear 

in the electromagnetic field does not appear. However, if the applied field is large, it can 

induce a dipole moment for individual atoms, molecules or groups of atoms, which is a 

function of the applied field, e.g., �⃗⃗⃗�𝑖𝑛𝑑(�⃗�; �⃗⃗�) or �⃗⃗�𝑖𝑛𝑑(�⃗�; �⃗⃗�). This induced polarization 

subsequently couples to the field, yielding non-linear terms (in the field), e.g., 

−�⃗⃗⃗�𝑖𝑛𝑑(�⃗�; �⃗⃗�)�⃗⃗�, in the cost function. In general, we would have, e.g., for the magnetization in 

the presence of a magnetic field a term �⃗⃗⃗�(�⃗�) = �⃗⃗⃗�𝑝𝑒𝑟𝑚(�⃗�) + �⃗⃗⃗�𝑖𝑛𝑑(�⃗�; �⃗⃗�). Such terms might 

become very relevant at extreme conditions. Here, we must note that the induced 

magnetizations and polarizations will often be many-body effects in the sense that the already 

re-oriented permanent dipoles together with induced dipoles of neighbor atoms or molecules, 

will have an effect on the size of the induced electric and/or magnetic dipole moment on a 

given atom or molecule, up to a transition to, e.g., a ferromagnetic phase. Thus, such induced 

dipoles, e.g., �⃗⃗⃗�(�⃗�; 𝑟), are often associated not only with individual atoms but with all the 

atoms contained inside a material point (labeled 𝑟) in the continuum approximation[89], 

which can considerably complicate the evaluation of the energy contribution due to the 

                                                 
20

 In some ab initio codes, such constant electric fields can be directly implemented when computing the ground 

state energy; external magnetic fields are more difficult, although there have been proposals how to address this 

issue.[96] Here, we are more concerned with the general principle for an ideal energy landscape. 
21

 Note that the orientation of these magnetic and electric dipoles are additional degrees of freedom in the 

microstate description of the atom configuration. If we deal with the interaction on the electrons+nuclei level, 

then the individual nuclear spins and the individual electron spins would enter the definition of the microstates. 

Here, one must again be careful not to double-count the interactions with the electric and magnetic fields, e.g., if 

we include both individual electron spins and permanent dipoles of an atom or a molecule in our model. 
22

 Clearly, if the electric or magnetic field becomes large enough, (crystalline) modifications with large 

polarization or magnetization, respectively, are the preferred ones, just like a high pressure favors high-density 

modifications.  



Journal of Innovative Materials in Extreme 
Conditions  

2021 
Volume 2 
Issue 1 

 

 17 Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME), Belgrade, Serbia. 

 

interaction of the magnetic and electric field with the induced dipoles of the material, for a 

given microstate.
23

  

 

iv) In addition to the terms that couple directly with the atoms via their dipole 

moments or charges, there is the term associated with the energy of the magnetic and/or the 

electric field itself, which generates an energy density 
1

8𝜋
𝜇(�⃗�)(�⃗⃗�)

2
 and 

1

8𝜋
𝜀(�⃗�)(�⃗⃗�)

2
, 

respectively. This term is always present, regardless of whether the chemical system couples 

directly to the electromagnetic field or not.
24

 This electromagnetic energy density contributes 

a pressure-like term to the cost function, resulting in the expression 𝐶(�⃗�) = 𝐸𝑝𝑜𝑡(�⃗�) +

[𝑝𝑚𝑒𝑐ℎ +
1

8𝜋
𝜇(�⃗�)(�⃗⃗�)

2
+

1

8𝜋
𝜀(�⃗�)(�⃗⃗�)

2
] 𝑉(�⃗�) − �⃗⃗⃗�(�⃗�)�⃗⃗� − �⃗⃗�(�⃗�)�⃗⃗� + ∑ (−𝑞𝑖�⃗⃗� ∙ �⃗⃗�𝑖)

𝑁
𝑖=1  - 

where the last term corresponds to the effect of the electric field on the ions in the system (if 

this term has not been already included in 𝐸𝑝𝑜𝑡(�⃗�) ) - for the generalized energy function, 

which again favors modifications that exhibit a high density analogously to the case of high 

pressures.
25

 

 

 

3.2 Temperature and free energy landscapes 

 

Pressure, mechanical stresses, and electromagnetic fields are quantities that can be 

taken into account via a straightforward generalization of the potential energy as a function of 

atom arrangement �⃗�. In fact, the resulting cost function does not structurally differ from the 

original potential energy landscape insofar as we can still characterize the energy landscape in 

terms of its local minima and generalized barriers[77,81].  

In contrast, introducing temperature into the system results in a major conceptual 

change in our treatment of the energy landscape. While the configuration space and the 

energy function of the system do not change, we can no longer expect to find the chemical 

system at a fixed position in configuration space, e.g., a local minimum, during a given 

observation time 𝑡𝑜𝑏𝑠. Instead, the system will explore various regions of configuration space 

during this observation time, depending on where we start initially. In order to be able to 

perform statistical mechanical calculations of various properties of the system that are in 

agreement with observations (averaged over the observation time), we have to focus on 

regions of the energy landscape that are locally ergodic on the time scale of 

observation.[97,43] We call a region ℛ locally ergodic on the time scale 𝑡𝑜𝑏𝑠, if 𝑡𝑜𝑏𝑠  ≫
𝜏𝑒𝑞(ℛ) while the observation time is much smaller than the time scale on which the system 

would leave the region, 𝑡𝑜𝑏𝑠 ≪ 𝜏𝑒𝑠𝑐(ℛ). Here, 𝜏𝑒𝑞(ℛ; 𝑂; 𝑎) is the shortest time for which the 

time average of an observable 𝑂 for a typical trajectory inside the region ℛ equals the 

ensemble average of the observable over the region ℛ with an accuracy 𝑎, ‖〈𝑂〉𝑒𝑛𝑠;ℛ −

〈𝑂〉𝑡𝑜𝑏𝑠;ℛ‖ < 𝑎. Similarly, 𝜏𝑒𝑠𝑐(ℛ)  would depend on the amount of probability flow leaving 

the locally ergodic region ℛ, which one is willing to accept up to the escape time scale. Of 

                                                 
23

 We also note that establishing such induced dipoles in response to the application of the field might require 

some time to occur 𝜏𝑖𝑛𝑑 , such that adding the corresponding energy terms might only be appropriate if we study 

the system on sufficiently large observational time scales 𝑡𝑜𝑏𝑠 ≫ 𝜏𝑖𝑛𝑑 . 
24

 Even if the atoms in the system do not react to the applied field at all (we assume the field is not so strong that 

it "ionizes" the atoms in the material as discussed above), we still have 𝜇(�⃗�) = 1(≠ 0) and 𝜀(�⃗�) = 1(≠ 0), and 

thus this energy density does not vanish.  
25

 In principle, the magnetic and electric field can vary as function of position - thus requiring an integral 
1

𝑉(�⃗⃗�)
∫ �⃗⃗⃗�(�⃗�; 𝑟)�⃗⃗�(𝑟)𝑑𝑉

𝑉(�⃗⃗�)
 instead of �⃗⃗⃗�(�⃗�)�⃗⃗�, and an analogous expression for the electric field term -, but we 

will assume for now that they are constant as function of position.  
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course, both the equilibration time and the escape time for a region depend on the temperature 

of the system; as a consequence, the set of locally ergodic regions for a given observation 

time scale changes as a function of temperature. Those states that do not belong to these 

locally ergodic regions (LER) are assigned to transition regions between the LERs or to 

marginally ergodic regions [46] commonly observed in liquids and glasses. 

One important consequence of local ergodicity is the existence of a well-defined local 

free energy 𝐹(ℛ) = −𝑘𝐵𝑇𝑙𝑛𝑍(ℛ)  = −𝑘𝐵𝑇𝑙𝑛[∑ 𝑒−𝐸𝑖/𝑘𝐵𝑇
𝑖∈ℛ ]  for all the regions ℛ that are 

locally ergodic on the time scale of observation.
26

 These locally ergodic regions correspond to 

the (meta)stable modifications of the system that can be present on the given time scale of 

observation. Note that once the system is prepared inside a locally ergodic region ℛ, it is not 

"aware" that other locally ergodic regions might exist with lower local free energy for 

observation times 𝑡𝑜𝑏𝑠 ≪ 𝜏𝑒𝑠𝑐(ℛ).
27

 

Clearly, this local ergodicity analysis can be applied to all generalized potential energy 

landscapes that include pressure, electric and magnetic fields, yielding a set of locally ergodic 

regions for a given time scale of observation at a given temperature and thermodynamic 

boundary conditions. We can visualize this effect by constructing a free energy landscape in a 

graph-like fashion consisting of discrete locally ergodic regions that are separated by 

generalized barriers (on a given time scale 𝑡𝑝𝑟𝑜𝑏, and at a given temperature). These barriers 

incorporate both energetic and entropic aspects and are computed from the probability flows 

between the regions,[77,78] which are determined using global exploration algorithms such 

as, e.g., the threshold algorithm.[98,99,79] This time scale dependence of the free energy 

barriers can be seen in the changes in the free energy landscape as function of observation 

time.[100] Another way to visualize the observation time dependence of the phases in a 

chemical system is shown in Fig. 3, where for different temperatures and pressures, the free 

energies and the time range over which the phases are locally ergodic are shown. 

 

                                                 
26

 As far as the microstates of the configuration space are concerned, they can either be assigned to non-

overlapping locally ergodic regions or to transition regions between the locally ergodic regions. To what extent 

the transition regions contribute to the total free energy of the system depends on type of system, temperature, 

and observation time scale. In a crystalline material at low temperatures, only the locally ergodic regions are 

important, but for a liquid or glass, the transition regions can be thermodynamically relevant. Here, we note that 

a glass usually exhibits a sequence of nested locally ergodic regions, whose escape times approximately equal 

their equilibration times, leading to marginally ergodic behavior.[46] Finally, we remark that the microstates 

belonging to a locally equilibrated region remain in equilibrium on all time scales larger than 𝜏𝑒𝑞(ℛ; 𝑂; 𝑎), even 

if the observation time scale exceeds the escape time 𝜏𝑒𝑠𝑐  from this region. 
27

 This seems to contradict the approach of "minimizing the (local) free energy" when finding the preferred 

phase of a system. But this minimization can only be done, if we have allowed the system to equilibrate globally 

over a relaxation time 𝑡𝑟𝑒𝑙𝑎𝑥 ≫ 𝜏𝑒𝑞
𝑔𝑙𝑜𝑏𝑎𝑙

 before the measurement takes place, such that the probability 𝑝(ℛ) =
𝑍(ℛ)

𝑍𝑡𝑜𝑡𝑎𝑙
= 𝑒𝑥𝑝(− 𝐹(ℛ) 𝑘𝐵𝑇⁄ )/𝑒𝑥𝑝(− 𝐹𝑡𝑜𝑡𝑎𝑙 𝑘𝐵𝑇⁄ ) to be found in region ℛ during a subsequent measurement for 

an observation time 𝑡𝑜𝑏𝑠 is maximal for the minimal local free energy 𝐹(ℛ). Furthermore, this concept makes 

only sense, if ∑ 𝑍(ℛ𝛼)𝛼 ≈ 𝑍𝑡𝑜𝑡𝑎𝑙 such that ∑ 𝑝(ℛ𝛼)𝛼 ≈ 1, i.e., the locally ergodic regions dominate the 

relevant regions of configuration space at the given temperature. 
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Figure 3: Qualitative sketch of Gibbs free energies of some typical locally ergodic regions 

found in a solid, for a given temperature and pressure. C corresponds to individual defect 

configurations, M is the super-cooled melt, B is a solid solution phase, A is a glassy phase, 

and P1 - P5 are (real, i.e., including all the local minima that correspond to equilibrium defect 

configurations) crystalline modifications. At temperature and pressure (𝑇1, 𝑝1) - marked in 

black -, P1 is the thermodynamically stable phase, P2 - P4 are metastable phases, and P5 is not 

locally ergodic on any observational time scale. In contrast, at (𝑇2 > 𝑇1, 𝑝1) - marked in red -, 

P2 is the thermodynamically stable (high-temperature) phase, P1, P3 and P4 are metastable 

phases, and P5 is not present. Finally, at (𝑇1, 𝑝2 > 𝑝1) - marked in blue -, P3 is the stable 

(high-pressure) phase, and P1, P4 and P5 are metastable phases, while P2 is no longer locally 

ergodic on any time scale. Note that the Gibbs free energy of a given phase usually increases 

with increasing pressure - due to the +𝑝𝑉 term in the free energy -, while it usually decreases 

with increasing temperature - due to the −𝑇𝑆 term in the free energy -, respectively. The 

horizontal solid lines indicate the range of observation times for which these phases would be 

locally ergodic - the bar to the left would be the equilibration time, and the bar to the right the 

escape time, respectively. The horizontal dashed line to the right indicates the marginal 

ergodicity of the amorphous phase - at the end of this line, formation of crystalline 

modifications within the amorphous matrix would take place. The dashed line to the left of 

the solid solution phase B indicates the marginal ergodicity of this phase while it slowly 

moves towards full local ergodicity. The vertical lines denote various observation times; e.g., 

at time t4, we have only two locally ergodic regions left: P1 and P2 for (𝑇1, 𝑝1), P2 and the 

solid solution phase B for (𝑇2, 𝑝1), and P3 and P4 for (𝑇1, 𝑝2). Remember that once we have 

prepared the system in one of the phases that are metastable for a given observation time, we 

would not know of the existence of competing phases with possibly lower local free energy. 

Note that we have assumed that 𝑇1,2 < 𝑇𝑚𝑒𝑙𝑡, and thus only a super-cooled melt can be 

present (on relatively short observational time scales), and not the actual melt phase. 

 

 

 

3.3 Steady-state energy landscapes 

 

Next to the static external conditions such as applying a constant pressure or 

electric/magnetic field, we can expose the system to various fluxes that are constant in time, 
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resulting in a stationary state or steady-state of the system. Examples are electric currents, 

thermal currents or diffusion currents, due to an applied electric field, a temperature gradient, 

or chemical potential gradient, respectively.
28

 The effects on the system of such fluxes are 

threefold, in principle: i) a direct coupling to the (atomic) degrees of freedom, beyond the one 

discussed above for electric or magnetic fields, ii) an indirect effect through the build-up of, 

e.g., a large magnetic field inside the material carrying the electric current, which results in a 

pressure-like term as discussed above, and iii) the generation of heat in the system through 

dissipation of the electric current, leading to a non-zero temperature inside the system even in 

cases when the system is not connected to an external heat reservoir at some temperature 𝑇. 

Conversely, a temperature gradient can generate an electric field (the Seebeck-

effect[91,101]). Quite generally, we must keep the Onsager relations[91] in mind, which 

couple the thermal, the diffusive and the electric currents. Again, we take our inspiration on 

how to proceed from thermodynamics, specifically non-equilibrium thermodynamics.[102-

105] 

A direct coupling of, e.g., an electric current to the atomistic degrees of freedom of the 

chemical system is not a common situation. An example may be the (supposedly non-thermal) 

effect of the electric current on phase transitions in orbital liquids,[106] but in this case, we 

are dealing with a primarily electronic effect. While this subsequently might induce some 

structural phase transition, this example would be less a "chemical" one and more a "physical" 

one. Usually, for a given configuration of the atoms �⃗�, the current itself does not play a role; 

instead, it is the electric field driving the current, which exerts a force on the atoms, and thus 

leads to a contribution to the potential energy of the system, as discussed above. An instance 

where such a direct effect of the current on the energy of the configuration may be observed, 

might be ionic transport, since - on a given observational time scale - this would lead to an 

"averaged out" position of ions along various channels in the structure and thus influence the 

locally ergodic regions of the landscape.
29

  

Of greater relevance is usually the generation of a contribution to the electric and 

magnetic field energy of the system. Here, we assume that we are applying a constant current 

𝑗 to the system. This implies a driving electric field �⃗⃗� = (𝜎𝑒𝑙(�⃗�))
−1

𝑗 that generates the 

current for the electric conductivity the system possesses in configuration �⃗�.
30

 Thus, if we 

want to enforce the value of the current to be 𝑗, we generate an energy density contribution 

due to the electric field of magnitude 
𝜀(�⃗⃗�)

8𝜋
[(𝜎𝑒𝑙(�⃗�))

−1

𝑗]
2

. Similarly, due to the magnetic 

field associated with the electric current, there is a contribution to the magnetic energy density 

of  
𝜇(�⃗⃗�)

8𝜋
[�⃗⃗�2].31

 In both cases, we can modify the energy contribution (which is obtained by 

multiplying the electromagnetic energy densities with 𝑉(�⃗�) as before), if we change to a 

                                                 
28

 We note that for an applied voltage generated via a static electric field, a current can only flow if the material 

is also connected to a source and a drain for the electrons (or ions). For the case of the electric field discussed in 

section 3.1, it was assumed that the material was isolated and thus no current could flow - only a build-up of 

electric charge at the surface resulting in a (macroscopic) dipole moment, would have been possible for a finite 

size system. Similarly, a steady-state diffusion current also requires a source and a drain for the atom/molecule 

carriers, where the injection and removal of the carriers takes place, respectively. In contrast, in a thermal 

current, no exchange of material particles with the environment is required as heat can also be carried by lattice 

vibrations or radiation. 
29

 One could also imagine that the collisions of these ions that are trying to move on average in a certain 

direction with the other (stationary) atoms can be represented by a pressure gradient leading to a deformation of 

the system.  
30

 In general, the conductivities and permeabilities will be tensors. 
31

 To compute the magnetic field �⃗⃗� generated by the current 𝐼 flowing through the material one would usually 

employ Biot-Savart's law;[89] note that the field will depend on the shape of the material, in general. 
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configuration �⃗� that exhibits a different magnetic permeability 𝜇(�⃗�), electric permeability 

𝜀(�⃗�) or electric conductivity 𝜎𝑒𝑙(�⃗�) .
32

 Fig. 4 shows a schematic representation of the 

extended energy landscape as function of electric current density, indicating the effect of 

electric conductivity and the pressure created by the electric and magnetic fields associated 

with the current density. 

 

 
 

Figure 4: Schematic depiction of an extended energy landscape as function of constant 

current |𝑗𝑒𝑙|. At very high currents, and thus at very high electromagnetic pressure 

contributions, the global minimum of the extended energy landscape will favor a structure 

with minimal volume / atom. However, at intermediate currents, the phase with the largest 

(but finite) conductivity can dominate the low-energy region of the energy landscape, even if 

it does not exhibit a high density nor does it constitute a minimum of the regular potential 

energy. 

 

Concerning a constant thermal current, we note that creating such a current requires 

establishing a thermal gradient in the material. As a consequence, the (macroscopic) solid 

would consist of a sequence of slices with different temperatures. Within each such slice, the 

temperature is approximately constant - as can be seen in, e.g., MD simulations[107] -, and 

we could treat the degrees of freedom associated with this slice as a subsystem that 

establishes its own local equilibrium at the temperature of the slice. Regarding the energy 

landscape as a whole, the locally ergodic regions associated with the whole solid would 

correspond to a union of atom arrangements restricted to each slice, which are individually in 

local thermal equilibrium, slightly modified by the interfaces, of course, in case the general 

structures of adjacent slices are different. In particular, we would see a competition between 

locally ergodic regions that correspond to a homogeneous phase of the whole solid with those 

                                                 
32

 There is one general problem here: what does one do, if 𝜎𝑒𝑙(�⃗�)  = 0 for configuration �⃗� ? Enforcing a current 

𝑗 then implies the application of an infinitely large electric field. Since this would result in an infinite energy 

contribution of the electric field density, such states would not (and should not) contribute to the 

physics/chemistry of the system. In particular, one would remove those configurations from the configuration 

space of the system, either directly or indirectly by assigning an infinite energy penalty. Of course, in reality 

such gigantic electric fields would destroy the constituent atoms of the chemical system by turning the solid into 

an electron-ion plasma, making an atom-based energy landscape description infeasible. However, since we are 

interested in extreme conditions, this possibility should be kept in mind; after all, once the electric field is so 

large that it can promote electrons from the valence to the conduction band, current can flow even in an 

insulator. 
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that correspond to, e.g., a low-temperature phase at the low-temperature end and a high-

temperature phase at the high-temperature end, with some interface or even intermediary 

phases in-between. Note, that this description can only be realized in the context of the energy 

landscape picture if we are dealing with the complete landscape consisting of 𝑁𝐴𝑣 atoms. In 

the reduced picture, where we use a small periodically repeated cell, such a description is not 

possible, of course.
33

  

We note, that, in contrast to the electric current, no term is added to the generalized 

potential energy function. In principle, we could try to introduce a "minimization-of-thermal-

current" criterion to the system, i.e., we add a penalty term associated with the total amount of 

heat energy being fed into the system in the sense that we "prefer" those phases, which have 

the highest thermal conductivity and thus require the smallest thermal gradient to establish a 

given amount of heat current, i.e., 𝑇ℎ𝑖𝑔ℎ − 𝑇𝑙𝑜𝑤 is the smallest temperature difference possible 

that generates a given thermal current (per volume) for a given average external temperature 

𝑇𝑒𝑥𝑡 ≈  
𝑇ℎ𝑖𝑔ℎ−𝑇𝑙𝑜𝑤

2
. However, since this thermal energy does not, by itself, influence the 

generalized potential energy function, we will not include this term in our description of the 

energy landscape proper.
34

  

The third type of current due to interaction with the environment would be the 

diffusion of some type of atoms or molecules through the material, with equal numbers 

entering and leaving the chemical system.
35

 The driving force behind such a current are 

differences in the concentration of the species of interest at the two sides of the material, and 

thus in the differences in the associated chemical potentials that are related to the 

concentration of the species (frequently in an exponential fashion when the relevant atoms 

can be modeled as a gas-like entity).[91,101] Again, we need a source and drain, respectively, 

on the opposite sides of the material for a steady-state current; else, the chemical potential 

difference would just lead to an accumulation and depletion of the species on the two sides of 

the material.
36

 Enforcing such a current requires the presence of an appropriate chemical 

potential difference that could be explicitly included in the extended cost function. However, 

one issue complicating the situation is the fact that one frequently incorporates the electric 

potential into the chemical potential, thus employing an "electrochemical potential" when 

dealing with diffusion of ions in both an electric field and concentration gradient.[101] In the 

present discussion, we try to keep these potentials separate, although the fact that the same 

carriers (ions) realize both currents establishes a connection automatically, which is 

formalized by the Onsager relations mentioned above.[91,101] 

We note that, as in the case of the electric field derived from the imposed current, we 

would need to determine the diffusion constant 𝐷(�⃗�; 𝑟) that enters Fick's law[91,93] 

connecting the current with the concentration gradient, by using simulations or models on the 

                                                 
33

 As a compromise, one could study the reduced periodic system for a multitude of temperatures in-between the 

applied temperatures 𝑇𝑙𝑜𝑤 and 𝑇ℎ𝑖𝑔ℎ , and construct an approximate landscape description by combining the 

locally ergodic regions for all the different temperatures, which might yield decent results as long as we can 

ignore the interfaces between the slices. 
34

 If we consider the system on time scales 𝑡𝑜𝑏𝑠 large enough to establish local equilibrium, then we also need to 

keep in mind the thermal expansion associated with each modification for non-zero temperatures. As a 

consequence, each locally ergodic region would be associated with an average density that enters the cost 

function via the 𝑝𝑉(�⃗�) term. Of course, as long as we compute the energy / cost directly as function of �⃗�, this 

term is included directly, but if we were to analyze the free energy landscape based only on the locally ergodic 

regions instead of the energy landscape, such a term should be included, similar to the induced magnetization or 

electric polarization for the contribution due to the magnetic and electric fields, respectively. 
35

 Of course, there are other types of currents that could be established in a material, such as spin-polarized 

currents.[108] We are not discussing such currents, but an analysis analogous to the one we have given in this 

section could be performed, of course. 
36

 This is similar to the case of ion conduction but driven by concentration differences instead of an electric field. 
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material point level, before we can compute the difference in the chemical potentials. 

However, there is no new energy density term associated with the chemical potential in this 

steady-state situation, in contrast to the energy of the magnetic field of the electric current. 

As mentioned earlier, the material properties such as permeabilities, conductivities, 

etc. are usually defined and computed on the continuum level, i.e., entering them into the 

energy landscape is a non-trivial calculation by itself for a given atom arrangement �⃗�, even if 

we employ the reduced periodic cell description of the energy landscape of a solid. 

Nevertheless, this contribution extends the potential energy landscape to steady-state 

situations with constant currents flowing through the system, or to the presence of static 

external elastic and electromagnetic fields. In practice, it is highly non-trivial to compute, 

from first principles, quantities like electric or thermal conductivity, the electric or magnetic 

permeability, or the elastic constants relating the stress tensor to the deformation tensor,
37

 

possibly as function of material point position 𝑟 in the continuum approximation. It might 

require performing MD-simulation experiments of "macroscopic" (or at least mesoscopic) 

versions of the (solid) system, in order to deduce these quantities from the simulations.
38

 

Alternatively, one could use semi-classical[101] or - if feasible - linear response 

methods[109] to deduce, e.g., conductivities via integration over (𝜔; �⃗⃗�)-dependent quantities 

like the group velocity, relaxation time, specific heat, charge, etc., of the (quasi-particle) 

carriers involved. Usually, one would not invest the time and effort, but, in principle, such an 

analysis for a given configuration �⃗� is possible, and should be performed as part of the 

evaluation of the cost function (�⃗�) . 

 

 

3.4 Systems with a variable number of atoms 

 

A very important though subtle interaction of the chemical system with the 

environment concerns the addition or removal of atoms to or from the system, respectively. 

Again, this can take place in equilibrium, in a steady-state situation, or while the system is in 

a non-stationary state out of equilibrium. There are several approaches for including this 

interaction into the energy landscape picture, of different complexity.  

Ideally, we include all the relevant atoms or degrees of freedom that describe the 

interface to the environment directly in the landscape. For non-equilibrium situations, this 

might often be the only solution that captures the important features of the dynamics of the 

system. 

In contrast, the minimalistic extension represents the environment via a chemical 

potential-like term 𝜇𝑖 in the cost function, 𝜇𝑖𝑁𝑖(�⃗�), for species i, and configuration 

�⃗�.[110,42] Here, 𝜇𝑖 can either be the "price-to-pay" for removing an atom of species i from its 

reservoir, before including it into the chemical system, or we can consider 𝜇𝑖 = 𝜇(𝑖) − 𝜇𝑖
𝑟𝑒𝑓

 as 

the difference between the chemical potential parameter inside the material 𝜇(𝑖) and the 

chemical potential of the atom of type i in the appropriate reference reservoir.
39

  

A major consequence of this approach is that the configuration space of the system 

must now accommodate atom arrangements with different numbers of atoms of the various 

                                                 
37

 Actually, this latter case is not so relevant since we can often employ the directly computable deformation 

tensor. 
38

 Such simulations might be needed especially in the extreme conditions we are considering here, since then the 

linear approximations and the formulas based on linear response theory would not really apply anymore.  
39

 Note that if we allow a variation in the number of atoms while we set 𝜇 = 0, then the system usually gains 

energy when adding an atom, although the energy / atom might not be favorable, if the interaction energy of the 

newly added atom lies below the average interaction energy of the other atoms. This can lead to phase separation 

in, e.g., multinary systems. 
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species in the chemical system. Thus, the locally ergodic regions no longer correspond to sets 

of atom arrangements for only a fixed number of atoms, but can include atom configurations 

with a spread in the composition. Furthermore, the moveclass will need to be modified to 

allow an efficient insertion and extraction of the atoms in the chemical system.
40

  

In principle, we can introduce whole molecules or complex ions as species, each with 

its own chemical potential. By modifying the moveclass such that it becomes possible to, e.g., 

exchange one carbon atom plus two oxygen atoms (that are close together) by one CO2 

molecule, we now are constructing an energy landscape for the efficient realization of 

chemical reactions in a spatially distributed system on a time scale, where such reactions can 

be visualized as taking only "one-step" between configurations in the state space. Of course, 

the underlying time scale of this moveclass is much larger than the one on which the actual 

reaction of a carbon atom with two oxygen atoms takes place.
41

 

We note, that we can, in principle, treat 𝜇𝑖 as a thermodynamic parameter we are free 

to vary, like the applied pressure, and, thus, we can analyze the extended energy landscape as 

a function of 𝜇𝑖. Usually, 𝜇𝑖 would be fixed by the specific environment the system interacts 

with, but we often might have some freedom in adjusting the chemical potential by modifying 

the experimental set-up. However, determining such an energy price is a rather tricky issue, 

since one needs to decide whether one wants to use an atom in the gas phase, an atom in the 

element in its solid ground state, or in some other state such as in a molecule or in an educt 

(e.g., in some binary compound), as the reference energy. In addition, this chemical potential 

would change as a function of temperature, of course. 

Of course, like in the case of the electric field or the temperature, the chemical 

potential can vary as a function of position 𝑟 (and time). Thus, the term in the cost function 

would again require an integral over all material points, 
1

𝑉(�⃗⃗�)
∫ 𝑁𝑖(�⃗�; 𝑟)𝜇𝑖(𝑟)𝑑𝑉

𝑉(�⃗⃗�)
. As a 

consequence, the LERs on the time scale of observation would consist of atom arrangements 

�⃗�, where certain species are accumulated in some spatial regions of the material while being 

depleted in others. We note that a spatially varying chemical potential can be of interest even 

if we enforce the requirement that the overall number of atoms of a species 
1

𝑉(�⃗⃗�)
∫ 𝑁𝑖(�⃗�; 𝑟)𝑑𝑉

𝑉(�⃗⃗�)
 is constant, i.e., if there is no exchange of atoms between the material 

and the environment. Then the LERs could, for a given set of atoms, correspond to unions of 

spatially distributed modifications that are each stable but for different values of the locally 

                                                 
40

 For solids represented by a periodic simulation cell, we encounter a conceptual and practical problem: we need 

to add/remove the atoms "inside" the system, i.e., inside the periodic simulation cell, instead of through the 

surface as would happen in a real system, - clearly a non-physical process; an exception is the transmutation of 

atoms during radioactive decay (but in that case there is no back-mutation possible, of course). As a practical 

consequence, "empty space" needs to be created to accommodate the added atoms, because we encounter 

extremely high repulsive interaction terms due to the fact that we insert an atom "on top" of the (usually tightly 

packed) atoms already in the cell. But a fluctuation in the volume of the simulation cell sufficient to create a 

large enough empty space to accommodate an additional atom is extremely unlikely, and furthermore, we 

generate additional 𝑝∆𝑉 terms, whenever we change the volume of the simulation cell. In practice, the 

insertion/removal of the atom would be combined with an enlargement/reduction of the periodic cell, possibly 

followed by a local optimization, such that the energy/atom does not vary by a large amount after performing 

this complex move. Clearly, such a move corresponds to a realistic time evolution of the system only on very 

large time scales, and thus it is usually only employed in the context of global optimization studies such as 

structure prediction or structure fits to experimental data, for variable compositions.[110,42] 
41

 For the analysis of an individual chemical reaction, we would employ the usual moveclass that allows only 

tiny atom displacements, but we would add the excited states of the atoms as part of the configuration space 

description of the microstates. Alternatively, we could also introduce the excited state landscape(s) of the 

chemical system, i.e., for each atom arrangement, several possible energy levels of the system (on ab initio level) 

exist, and our moveclass allows us to move on either landscape, and to switch between the landscapes with a 

certain probability. 
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prescribed chemical potential, similar to the distribution of high- and low-temperature phases 

in a material in a temperature gradient.  

Of course, such spatially distributed modifications that split the material into regions 

with high and low occurrences of various atom species will also be possible, if we allow the 

overall number of atoms of the various species to vary due to atom exchange with the 

environment, such that the average chemical potential will establish an overall composition of 

the chemical system.  

There are certain situations, e.g., the study of defect compounds as a function of 

composition, where the use of a chemical potential can be very helpful. In such a case, we can 

assume that we are on time scales, for which the amounts of, e.g., hydrogen or oxygen 

atoms/ions inside the material are expected to be in thermodynamic equilibrium with a 

reservoir of gaseous hydrogen or oxygen molecules. Instead of dealing with the many 

additional degrees of freedom required by an atom level description of the reservoir, its 

presence is incorporated in the chemical potential. Another example is, e.g., the use of a 

chemical potential based on the partial pressure of, e.g., an oxygen atmosphere in equilibrium 

with a solid.[111] In this situation, the gaseous state of the oxygen atoms which are in 

equilibrium with the solid is properly accounted for by the (adjustable) chemical potential, 

since in this case the dependence of the chemical potential on, e.g., the temperature or the 

overall pressure, is well-established from experiments for many gas species. 

We note that for the special case of a simple gradient of the chemical potential for a 

particular atom species, with corresponding source and drain, a diffusion flux will be 

established inside the system, and the material will be in a steady-state, where a sequence of 

modifications from high- to low-concentrations of the species appears when moving from the 

source to the drain region. This is the dual case to the enforced steady-state diffusion flux that 

implied a chemical potential difference, which we discussed in the previous section 3.3. 

The third way to incorporate the environment into the energy landscape when the 

number of atoms in the chemical system is not constant, is to add an explicit reservoir to the 

energy landscape. Here, a large number of atoms are in equilibrium in a reservoir in form of 

the reference state, which might be an elemental gas, liquid, solid, or some simple binary or 

ternary compound at given thermodynamic boundary conditions such as the temperature. In 

that case, the chemical potential as a "price-to-pay" is automatically computed from the (free) 

energy loss of the reservoir when moving the atom into the chemical system.
42

 In this way, we 

would be able to establish a grand canonical (equilibrium) energy function. This approach is 

particularly useful, if it is difficult to directly obtain the chemical potential as a function of, 

e.g., pressure or temperature.  

 

This last approach again underlines the importance of time scales. Just like an 

externally applied pressure or temperature require time to establish themselves throughout the 

chemical system, the same holds true for an externally prescribed chemical potential. Now, 

we often can assume that the generation of a prescribed pressure distribution will take place, 

e.g., with a speed on the order of the speed of sound, and thus, the time needed can frequently 

be ignored in experiments, 𝑡𝑜𝑏𝑠 ≫ 𝜏𝑒𝑞
(𝑝)

, and, similarly, one can often assume that 𝑡𝑜𝑏𝑠 ≫ 𝜏𝑒𝑞
(𝑇)

, 

where 𝜏𝑒𝑞
(𝑝)

 and 𝜏𝑒𝑞
(𝑇)

 are the time scales on which applied stress or temperature are present 

                                                 
42

 Here, we can either employ the instantaneous change in energy or a time-average of the (free) energy 

associated with the atom in the reservoir as the "price-to-pay". In both cases, we catch the fluctuations in the 

reservoir, as function of temperature, pressure, etc., when we average over many moves that correspond to a 

forward-and-backward transfer of an atom between the system and the reservoir. Such in-situ simulations of the 

chemical potential that also include efficient procedures to insert the atoms into the chemical system, are by now 

incorporated in a number of simulation packages.[112]  
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throughout the system, respectively.
43

 However, the equilibration time scales for external 

parameters is often a problem in the case of the chemical potential, since the addition/removal 

of atoms usually takes place via a real interface (surface, grain boundary, etc.). Thus, 

equilibration with respect to the thermodynamic boundary condition in form of the prescribed 

chemical potential will be established on the time scale of the diffusion, which can be 

extremely slow when we are dealing with a solid.  

We still can explore the extended cost function landscape of a chemical system for a 

given chemical potential, and thus determine, e.g., the set of metastable phases in the system 

as function of the chemical potentials 𝜇𝑖. But we will often have to deal with non-equilibrium 

situations, because the processes we are interested in take place on much shorter time scales, 

i.e., 𝑡𝑜𝑏𝑠 ≪ 𝜏𝑒𝑞
(𝜇)

, where 𝜏𝑒𝑞
(𝜇)

 is the time scale on which a chemical potential has been 

established throughout the material. 

 

 

3.5 Time-dependent energy landscapes 

 

In the context of materials under extreme conditions, and especially in the case of 

material-environment combinations, which exhibit strong non-equilibrium behavior, we often 

encounter energy landscapes that depend on time, 𝐸(�⃗�; 𝑡). Since an energy landscape is 

defined via three elements - cost/energy function, moveclass and configuration space -, we 

must address possible time dependencies of all three elements. Of course, in general, all three 

elements together can, and often will, depend on time. In addition, derived features that 

control the dynamics on the landscape such as generalized barriers or locally ergodic regions 

will also depend on time, especially if the equilibration times are large compared to the time 

scale of variation of the landscape. 

 

3.5.1. Time-dependent moveclass 

 

In this case, neither the set of configurations nor the energy assigned to a given 

configuration changes with time; instead, it is the connectivity of the configuration space 

which is affected. This case is most relevant for optimization problems, although it can also 

occur in the case of physical or chemical systems, where the time evolution of the system is 

modified. Usually, the physics of a system does not allow for a change in the evolution laws 

without at the same time modifying, e.g., the energy function itself; exceptions are externally 

driven dynamics where, e.g., certain "flips" of spins are controlled and initiated by some 

(time-varying) external effective force. But here the issue is one of the time scales, because, 

on the physical time scale (femto seconds), our "control" does not apply unless it makes itself 

felt by a modification of the energy function to generate the driving force (but this was not 

supposed to happen!). In that case, we would be back to the situation of a physically defined 

moveclass with a time-varying energy function. As a consequence, variations of only the 

moveclass in a physical time evolution must reflect the behavior of the chemical or physical 

system on (moderately) long time scales exceeding the time scale of the elementary processes 

which would be involved in variations of the energy. 

Since the moveclass implicitly defines what we call a local minimum, changes of the 

moveclass also change the locally ergodic regions on the landscape. Furthermore, moveclass 

changes modify not only the energetic but also the entropic and kinetic barriers, and thus the 

                                                 
43

 Of course, there are many instances, such as shock waves, where we are interested in the way the system 

reacts to the sudden application of an external stress at some local region on the surface of the material, and thus 

the influence of the barrier landscape on the relaxation behavior of the (macroscopic) system would need to be 

studied. 
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generalized barriers and probability flows, and therefore alter the corresponding free energy 

landscape.
44

  

 

 

3.5.2. Time-dependent changes in configuration space 

 

Next, we turn to changes in configuration space as a function of time, where we 

modify the set of states 𝑆 over which the energy function is defined. The most relevant such 

change in chemical systems is usually the addition or removal of atoms from the system.
45

 

Clearly, we can treat this as a switch between two configuration spaces, but we could also 

consider a giant state space (analogous to the Hilbert-Fock space in elementary particle 

physics), where creation and annihilation of atoms is part of the moveclass, and 

configurations can exhibit varying numbers and types of atoms or molecules. In a way, we 

would keep the "additional" atoms in "reserve" in some kind of a virtual reservoir. As 

mentioned earlier in the discussion of the chemical potential (c.f., section 3.4), it is not always 

clear, how to account for these atoms energetically, but we could imagine that this change in 

configuration space is enforced from the outside and does not constitute an equilibrium 

process (as our interpretation of the chemical potential as a "price-to-pay" implies). 

In this context, we note that the locally ergodic regions change automatically when 

adding/removing an atom. If we have an order parameter, which classifies all (relevant) 

LERs,[97] then we might be able to group the LERs for different numbers of atoms - and 

even for some ranges of composition - together according to the order parameter value.  This 

might work for LERs corresponding to real crystalline phases - i.e., the LER consists of a 

minimum representing the ideal crystal plus all minima associated with equilibrium defect 

configurations -, on relatively long observation times, which can be classified based on, e.g., 

(averaged) symmetries, cell parameters and atom positions inside the unit cell, which is 

possible for a slowly varying energy landscape. But this order parameter approach becomes 

essentially impossible for fast variations of the landscape that allow only stable regions on 

very short observation times, where single local minima corresponding to individual defect 

arrangements constitute the only LERs of the system.  

 

 

 

3.5.3 Time-dependent energy function 

 

Probably the most common and important time-dependence occurs when the energy 

function itself is modified. There are two different basic types of changes for chemical 

systems: i) changes of the interaction terms, leading to what is sometimes called 

"computational alchemy"[114-117] since we are essentially transforming one chemical 

system into another one, and ii) changes in the external forces and thermodynamic 

parameters, such as pressure, electric field, stresses, etc. Of course, any combination of these 

two basic types is likely to occur for some environments the material is in contact with. 

                                                 
44

 From an algorithmic point of view, any adaptive exploration or global optimization algorithm changes the 

moveclass as function of its progression, perhaps based on information about the properties of the landscape 

studied so far. 
45

 Other typical changes of the configuration space of chemical systems would be adding or removing 

restrictions on the allowed volume 𝑉(�⃗�) that the simulation cell is allowed to have (both maximum and 

minimum bounds - e.g., for a MOF - on the volume are possible), or allowing the oxidation state of the ions to 

vary instead of keeping them fixed; the contribution to the energy is then accounted for in terms of the ionization 

energies and electron affinities of the ions.[113,42] 
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In both cases, the configuration space and the moveclass do not change, i.e., we are 

still dealing with the same set of atoms, where the state �⃗� is given by their coordinates (plus 

the unit cell parameters when we model a solid via a periodically repeated simulation cell), 

and, furthermore, the neighborhood of the states ℕ(�⃗�) is unchanged, and only the energy or 

cost functions 𝐸(�⃗�) or 𝐶(�⃗�), respectively, are modified. Of course, changing the cost 

function can and will modify not only the size of the LERs, but will also lead to the creation 

and/or annihilation of LERs on a given observational time scale. This is obvious when one 

considers the fact that both minima and energy barriers (and also entropic barriers) will 

change their shape and size, and even vanish or appear as such. Clearly, this affects the 

probability flows in the system, and thus the equilibration and escape times of feasible LERs. 

As a consequence, the (thermodynamic) time evolution of the system changes, and we gain a 

measure of control over the system, which can be used to guide it to a certain modification, or 

compute the difference in free energies between two chemical systems in an efficient 

fashion.[118] 

 

 

3.5.4 Slow variation of the energy landscape 

 

Of particular interest is the comparison between the time scale of observation 𝑡𝑜𝑏𝑠 and 

the time scale of variation 𝑡𝑣𝑎𝑟 on which a noticeable change of the moveclass, the energy 

function and/or the configuration space takes place. If 𝑡𝑣𝑎𝑟 ≫ 𝑡𝑜𝑏𝑠 , then we can picture the 

time-dependent landscape as a sequence of only slightly modified versions, where for each 

such time slice we can compute the locally ergodic regions, probability flows, and other 

properties of the system for small enough time scales of observation.  

If now physically and chemically interesting locally ergodic regions exist on the time 

scale of interest 𝑡𝑜𝑏𝑠, then there will be an adiabatic slow evolution of this set of LERs and 

other features of the landscape, and we can treat the landscape at each time as an essentially 

constant (time-independent) case, as far as features present on the time scale 𝑡𝑜𝑏𝑠 are 

concerned. Possibly critical is the case when, e.g., LERs vanish or come into existence 

starting at some time along with the time evolution of the landscape, corresponding to a 

singularity in the free energy landscape as a function of time. But since the size of the LER 

will decrease/increase only slowly and smoothly, this can be handled without major 

discontinuities. 

 

 

 

3.5.5 Fast variation of the energy landscape 

 

But what about fast variations of the landscape with time? Then, we will only be able 

to define LERs and "controlled" probability flows on very short observational times scales 

𝑡𝑜𝑏𝑠 ≪ 𝑡𝑣𝑎𝑟, which might correspond to having only a few local minima representing 

individual defect states as LERs on the landscape. In such a case, the system becomes 

strongly non-equilibrated, where we never reach local equilibrium - and, usually, also do not 

reach a steady-state - on the relevant time scale of observation. Thus, the results will not only 

strongly depend on the starting state, but we never establish any real control over the system. 

Still, if the fast variation with time is periodic (!) in time, we might again be able to establish 

some kind of equilibrium-like state, plus some resonances in the system. Similarly, the case of 

a fast variation around some average energy function but with only limited amplitude as far as 

the changes are concerned, might be amenable to treatment.  
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Fig. 5 shows the evolution of a schematic landscape where the energy function 

changes with time, at two different speeds (a: moderately slow; b: rather fast), together with 

the evolution of a probability distribution of a system that had originally been prepared in 

region B in configuration space in the first time slice. Here, it is assumed that the moderately 

slow change in the energy function results in an adiabatic transfer of the system into a target 

region E in the configuration space in the final time slice 5, even though region D is assumed 

to be the minimum of the free energy in this time slice. Here, we can imagine that region E is 

the result of a "merged" evolution of the former regions B and C, while region D is mostly the 

result of the evolution of region A. Thus, for a very slow change, such that the system is 

always in global equilibrium at each time slice, we would find some non-vanishing 

probability in every region for all time slices, and in the final slice, the maximum of the 

probability would be in region D. On the other hand, a rapid change in the energy function 

leads to a transfer of some probability into region D, when switching between slices 3 and 4. 

The reason is that the fast evolution of the energy function "left" some of the original 

probability from region B in the transition region between the former regions A and B at slice 

3, and thus when regions B and C "morphed" into region E in slice 4, some of the probability 

in the transition region moved into the region D that incorporated the former region A. 

 

 
Figure 5: Schematic time-dependent energy landscapes, shown for five different time slices. 

The general change in the two landscapes is the same but the rate at which the change takes 

place is assumed to be slower in picture (a) than in picture (b), i.e., the actual times elapsed 

between the slices are considerably larger in the picture (a) than in picture (b). At the 

beginning (slice 1), the system is prepared in region B, with no probability in regions A and 

C, even though some probability would be in these regions in global equilibrium. At the last 

time slice, we show two valleys: the "target" region E, and a second region D, where D is 

actually assumed to be the thermodynamically stable phase at the last time slice. The 

moderately slow evolution shown in Fig. (a) allows the system prepared in the locally ergodic 

region B to adiabatically be transformed into occupying only one locally ergodic region, the 

target region E, at the end of the transformation of the landscape. In contrast, the fast 

evolution of the landscape in Fig. (b) leads to a split of the probability flow of the system 

when moving from slice 3 to slice 4. Thus, not only the target region E is occupied at the end 

of the process, but also a non-negligible amount of probability resides in region D.  

 

Let us consider now some energy landscape aspects if the time variation of the energy 

function (or the moveclass or the configuration space) is very rapid:
46

 

i) 𝑡𝑣𝑎𝑟 ≈ 𝑡𝑜𝑏𝑠 ≥ 𝜏𝑒𝑞(ℛ) such that the escape time shrinks to the order of 𝑡𝑣𝑎𝑟, 

𝜏𝑒𝑠𝑐(ℛ) ≈ 𝜏𝑒𝑞(ℛ) ≈ 𝑡𝑣𝑎𝑟 : In this case, the locally ergodic regions are reduced to being only 

marginally ergodic, but without the nesting property which had generated aging behavior in 

the case of, e.g., amorphous solids. Thus, we will not observe aging but a kaleidoscopic 

                                                 
46

 Note that here we mainly think of time variation of the energy function; we assume that the moveclass and the 

configuration space are essentially unchanged. But the discussion would also apply if the moveclass and/or the 

configuration space varied in time. 

t1 2 3 4 5

A

B

C

D

E

E(X;t) X

1 2 3 4 5

A

B

C

D

E

X

t

E(X;t)

a) b)



Journal of Innovative Materials in Extreme 
Conditions  

2021 
Volume 2 
Issue 1 

 

 30 Serbian Society for Innovative Materials in Extreme Conditions (SIM-EXTREME), Belgrade, Serbia. 

 

procession or random walk through a gallery of LERs that are capable of existence on the 

time scale 𝑡𝑜𝑏𝑠. However, the fraction of the landscape associated with transition regions is 

also very likely to grow compared to the fraction belonging to LERs, possibly quite 

substantially. 

ii) The noticeable variation of the energy landscape with time is so fast and so large 

that we are greatly out of equilibrium, such that even local minimizations (via, e.g., a 

stochastic quench - both in physical experiments and in simulations with realistic moveclasses 

- ) are no longer controllable. In this situation, we face serious problems, like a sailor in a boat 

with rapidly but also randomly appearing mountains and troughs in the water, and it is not 

clear, whether knowledge of the energy landscape as such will yield insights beyond its 

availability to compute, e.g., the (Newtonian) forces on the atoms at any given moment. 

iii) However, we might want to consider fast variations of the energy function, which 

only show a small amplitude in the random fluctuations of the landscape parameters around 

some average values. Usually, this means that the LERs actually do not change by much, 

unless the small fluctuations reduce the generalized barriers stabilizing the LERs to such a 

degree that 𝜏𝑒𝑠𝑐(ℛ) ≤ 𝑡𝑜𝑏𝑠. Such "noisy" landscapes are sometimes assigned a noise-

temperature proportional to the (square root) of the size of the fluctuations in the energy of the 

system; as a consequence, simulations on the landscape represent the dynamics reasonably 

well at temperatures larger than the noise-temperature.
47

 An application of such a noisy 

landscape is the optimization of the parameters in a neural network (NN) for machine learning 

applications.[119-121] The cost function landscape for such an optimization problem consists 

of varying training sets of examples to be solved by the network. Since the members of these 

training sets present slightly different tasks to the neural network, the cost function that 

measures the agreement between the correct assignment and the one produced by the neural 

network of the quantity of interest for a given set of NN parameters, changes with time as 

function of the training set currently being shown, thus acquiring a "noise" feature in the 

process. 

iv) We next consider periodic variations, i.e., the landscape is periodic in time with 

period 𝑡𝑣𝑎𝑟: if we check the landscape on periodic time points, 𝑡, 𝑡 + 𝑇, 𝑡 + 2𝑇, . .. , where 

𝑇 = 𝑡𝑣𝑎𝑟 is the period of the time variation of the landscape, we might expect to find various 

kinds of attractors, like in the theory of chaos. Quite likely, the system will reach some 

"steady-state" like behavior via a "spreading" of probability all over the landscape such that 

we get a stable distribution of probability over all the LERs in the system when observed in 

time steps of the period of the variation.
48

 This kind of distribution might correspond to a 

limit cycle, but it might also show properties of a strange attractor,[122] depending on the 

type of energy function and its time variation. 

To identify this set of stationary distributions of the occupation probability of the 

LERs, we need to simulate probability flows over many periods of the system, starting in 

various LERs, and see whether the flow becomes periodic in agreement with the driving force 

                                                 
47

 From a mathematical point of view, we expect some kind of "quasi-periodic" and/or chaotic behavior for such 

a "noisy" landscape. But while the trajectories of the system in configuration space can rapidly diverge, this 

might not influence the existence of the LERs; it may well happen that the equilibration times are actually 

somewhat smaller (since the chaotic mixing of the trajectories can accelerate the establishment of local 

ergodicity), while the escape times are only weakly reduced, as long as the magnitude of the fluctuations is 

small. 
48

 In the limit of very long observation times, we would expect to have a certain distribution at each location in 

time between two such measurement points, which evolves into the next "stable" distribution a short time 

afterwards, and always repeats after a time interval 𝑇 has elapsed. Clearly, since we have a strongly varying 

though bounded variation of the energy landscape, at each point in time inside the time interval of the period of 

the system, there will be a different set of LERs present (only for very short observation times 𝑡𝑜𝑏𝑠 ≪ 𝑡𝑣𝑎𝑟 , of 

course), in principle, and thus the distribution over these LERs will change from time to time until one period 

has passed. 
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(= landscape variation), after some initialization phase. However, one should note that the 

probability distribution over the configuration space might not exhibit, or cannot be 

associated with locally ergodic regions at all, especially if the variation of the energy function 

is very large such that no consistent set of LERs can be identified as stable (or at least as 

approximately stable) between successive times of observation in the first place. As a 

consequence, we can only try to extract a periodic occupation probability over the whole 

configuration space from our simulations or explorations, which reflect or incorporate the 

time-dependence of the energy landscape (possibly, but not necessarily in an average 

fashion). 

v) Even if there is no periodicity in the rapid and sizeable fluctuations of the energy 

landscape, i.e., we are dealing with a non-periodic or chaotic variation of the landscape with a 

large amplitude in contrast to the small amplitude in case iii) but not so wildly oscillating as 

in case ii), we might obtain some "averaged" occupation probability distribution over the 

configuration space as a whole as long as the amplitude of the variation is limited in size. But 

in this case, since we no longer have a real "reference" set of LERs (which could reappear 

periodically as in the case of periodic variation), we must extract such a "constant" 

distribution over "quasi-stationary" not-equilibrated regions from the outcome of many 

simulations starting from a large number of starting points on the landscape at the initial time 

𝑡0(= 0). We note that this behavior of the probability flows on the energy landscape exhibits 

many analogies with the chaotic dynamics found in many classical mechanical systems, when 

viewed from a statistical point of view.[122,123] 

vi) A special case would be a large variation of the energy function with time, where 

the "amount of change" with respect to the starting energy function increases in a monotonic 

fashion. We note that monotonicity lies in the eyes of the beholder considering the fact that 

we have a high-dimensional parameter space to perform the change in, e.g., by varying the 

many parameters in empirical potentials. Here, we assume that the change is monotonic in 

terms of the energies of the ground state and other low-energy local minima; our discussion 

also would apply to other criteria of monotonicity as long as we do not enter unphysical 

regimes.  

In order to avoid a growth of the energy in the system beyond all bounds in either the 

negative or the positive direction (i.e., we demand that the energy of the system remains 

bounded from below and the ground state energy does not grow toward positive infinity 

either), this usually would require the change to cease after a finite total time (of the 

simulation or experiment). Alternatively, the change in the energy function of the system 

might rapidly slow down for times beyond some cut-off time, e.g., corresponding to an 

exponential cut-off. Of course, this would result in a "limit" landscape, which could be 

analyzed like any constant or nearly constant energy landscape. But on observational time 

scales shorter than this limit time, interesting phenomena may emerge. We note that such 

monotonic changes in the landscape are reminiscent of the adiabatic change of the landscape 

mentioned earlier in the context of chemical alchemy: again, we essentially switch the system 

from a starting to a final landscape. But in this more general case, the switch can take place in 

an arbitrary fashion, ranging from a single sudden jump over a multi-jump trajectory to a 

smooth movement like in the case of the adiabatic transition. As a consequence, we most 

likely will be able to split the analysis into studying separately the time-regimes, where the 

change is slow enough to allow the establishment of locally ergodic regions and well-defined 

probability flows between them, and those where the large sudden jumps occur, 

corresponding to the case discussed earlier under the heading of very fast landscape changes. 

But as long as we deal with large but solitary jumps in the shape of the energy 

landscape that are separated by long time intervals, the dynamics resemble the relaxation 

processes of a quenched system, in the sense that the original equilibrium probability 

distribution over the microstates greatly differs and is highly inappropriate for the new 
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landscape after the jump in the parameters of the energy function, yet there is enough time 

until the next jump in the shape of the landscape to extract important features of the relaxation 

behavior.  

This seems to resemble the analysis of the relaxation processes in, e.g., a glass 

quenched from the melt. But an important difference to the dynamics of a quenched melt, is 

that the temperature of the system might still be high, because the new landscape is caused by 

the change in the energy function and not by a reduction in temperature. In contrast, when 

quenching from the melt, we only change the relevant accessible part of the complete 

(unchanged) landscape seen by the system: at high temperatures, the system moved in a zone 

of the landscape above the deep minima basins barely noticing the underlying energy barriers 

and deep minima, while at low temperatures, the system is forced to cross major energy 

barriers all the time by essentially hopping among the deep minima separated by large 

barriers, and thus possibly getting frozen into, e.g., amorphous atom arrangements.
49

 

 

 

 

3.5.6 Bounds derived for smooth time variations 

 

 

Beyond these more general considerations, let us consider, whether we can deduce any 

information from the change in time of the energy function 𝐸(�⃗�, 𝑡), if this change takes place 

in a smooth fashion, such that its derivative is defined, 
𝜕𝐸(�⃗⃗�,𝑡)

𝜕𝑡
, at state �⃗� , i.e., can we make 

statements about the time evolution / equilibration / search algorithm performance if we know 
𝜕𝐸(�⃗⃗�,𝑡)

𝜕𝑡
 ? 

If  
𝜕𝐸(�⃗⃗�,𝑡)

𝜕𝑡
 varies weakly enough such that 𝑚𝑎𝑥𝐴 [

𝜕𝐸(�⃗⃗�,𝑡)

𝜕𝑡
] 𝑡𝑣𝑎𝑟 ≪ 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟

𝐴 (𝑡), inside 

some region 𝐴 (which might be taken as a locally ergodic region at the initial time), then this 

region would (probably) be stable enough to preserve local ergodicity on time scales 𝑡𝑜𝑏𝑠 ≈
𝑡𝑣𝑎𝑟 . We say "probably", because it is not clear what energy barriers we might have to deal 

with - just those that separate 𝐴 from the rest of the landscape and thus mainly affect 𝜏𝑒𝑠𝑐(𝐴), 

or also those barriers inside the region 𝐴, which would influence the equilibration time 

𝜏𝑒𝑞(𝐴), leading to a possible split of the region 𝐴 into several smaller regions that are each 

locally ergodic on the time scale 𝑡𝑣𝑎𝑟 . 

Let us assume that we are dealing with a low-temperature case such that energetic 

barriers are most relevant in the system. Then, for a locally ergodic region ℛ, the ratio of the 

largest relevant energy barrier and the rate of change of the energy, 

𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟
ℛ (𝑡) 𝑚𝑎𝑥ℛ [

𝜕𝐸(�⃗⃗�,𝑡)

𝜕𝑡
]⁄  = 𝑡𝑣𝑎𝑟 represents the time scale beyond which ℛ is expected to 

be strongly affected by the change in 𝐸(�⃗�, 𝑡) with time. As long as 𝑡𝑣𝑎𝑟 > 𝜏𝑒𝑠𝑐(ℛ), we can 

treat the local ergodicity property of ℛ as being preserved on the time scale 𝑡𝑣𝑎𝑟. If this 

applies to all LER of 𝐸(�⃗�, 𝑡) on the time scales 𝑡𝑜𝑏𝑠 of interest, then the LER structure of the 

system does not change by much. Thus, for 𝑡𝑜𝑏𝑠 < 𝑡𝑣𝑎𝑟, we essentially remain inside the 

phase ℛ which is modified, of course, due to the time dependence of 𝐸(�⃗�, 𝑡), but we do not 

leave the specific region(s) during, e.g., the experiment, which we are simulating. 

                                                 
49

 Such a rapid change in the relevant landscape by slight changes in temperature has been proposed as the 

mechanism of the glass transition via so-called exponential trapping in the low-energy range of the landscape of 

glass formers that exhibit exponential growth in the local density of states of the low-energy range of the 

landscape, such as in lattice networks.[124] 
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If 𝑡𝑜𝑏𝑠 > 𝑡𝑣𝑎𝑟 > 𝜏𝑒𝑠𝑐(ℛ), then we need to be concerned about the effect of the 

changes in 𝐸(�⃗�, 𝑡) on the probability flows. If, on the other hand, 𝑡𝑣𝑎𝑟 ≫ 𝑡𝑜𝑏𝑠 ≈ 𝜏𝑒𝑞(ℛ), then 

we can expect that, at least to a certain extent, the probability flows between the LERs  on the 

time scale of 𝑡𝑜𝑏𝑠, are still similar to those at the starting time. 

Clearly, this suggests that we might be able to use optimal control theory, analogously 

to finite-time thermodynamics, to guide the system to a certain region in configuration space, 

if we can control the change in the energy function. But can this be done even if we are not 

close to equilibrium ?
50

  

In this case, we might have to deal with cost functions that are defined by a very 

complicated process but which still depends on the (�⃗�; 𝑡), of course.
51
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 Sometimes, this is possible if the non-equilibrium probability flows are moving in the "right" direction, even 

without detailed control via quasi-equilibrium states. 
51

 An example would be a TSP problem with 𝑁𝐶  cities where the connections between the cities and their travel 

times evolve on an (exterior) time scale - called 𝑡𝑒𝑥𝑡, and the goal is to finish the route in as short a time 

𝑇(�⃗�; 𝑡𝑒𝑥𝑡) . This task is straightforward, if the we can finish the route before the connections have changed as 

function of the exterior time. But we have problems, if the travel time 𝑇(�⃗�; 𝑡) = 𝑇(�⃗�; 𝑡𝑒𝑥𝑡) needed to cover the 

route �⃗� changes as function of time while we are still driving, i.e., the speed 𝑣 is so small that we cannot drive 

the whole route while the effective lengths (which change with time) of the individual distances between the 

cities are still approximately constant. In this case, we have a "quasi-external" parameter (the interior time), 

which controls the route scheduling. Assuming, we have a well-defined starting time for the route 𝑡0, we must 

compute, for given speed, for each suggested route the total time expression (which corresponds to our cost 

function) 𝐶(�⃗�) = ∑ 𝑇𝑖(𝑡𝑖)
𝑁𝐶
𝑖=1 =

1

𝑣
∑ 𝐿𝑖(𝑡𝑖)

𝑁𝐶
𝑖=1 , where 𝑇𝑖  is the time it takes to drive piece 𝑖, and 𝑡𝑖 =

1

𝑣
∑ 𝐿𝑗(𝑡𝑗)𝑖−1

𝑗=1  

= ∑ 𝑇𝑗(𝑡𝑗)𝑖−1
𝑗=1  is the moment in time when the salesman starts segment 𝑖 of the route. In this case, the cost 

function is a bit complicated, since it is "path-dependent", but, due to the straightforward relationship between 

the effective path lengths 𝐿𝑖(𝑡𝑖) and the "internal" time points 𝑡𝑖 , each state �⃗� (= selected city route) of the 

system has a well-defined length (as long as we fix the point in time when we want to start the route). Thus, we 

can globally optimize the corresponding TSP-problem; ie., we have "incorporated" the time aspect into the state 

itself, because the state corresponds to the whole route. Only, if we were to compute the cost (= time) of the 

route for extremely high speeds such that in the expression 
1

𝑣
∑ 𝐿𝑖(𝑡𝑖)

𝑁𝐶
𝑖=1  all the 𝐿𝑖(𝑡𝑖) have essentially the value 

𝐿𝑖(𝑡𝑒𝑥𝑡) (and thus we can add them in arbitrary order without having to worry about their changing in the time 

needed to cover the whole route), would it make sense to consider a distinct sequence of cost functions 

𝐶(�⃗�; 𝑡𝑒𝑥𝑡) = 𝑇(�⃗�; 𝑡𝑒𝑥𝑡) and their corresponding cost landscapes. But this approach only works on the level of an 

optimization problem, for which we know the 𝐿𝑖(𝑡) for every distance piece between any two cities at any time 

(of the day). Ideally, we would proceed in the same fashion for all processes with general time dependent energy 

functions - also for physical or chemical systems - , but this is usually much too complex and difficult to do, as it 

would correspond to solving the time-evolution on the time dependent energy landscape for each possible 

trajectory of the system. However, if simplified model descriptions of the chemical and physical processes are 

available, then such problems can be addresses with the tools of finite-time thermodynamics. 
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4. Systems under extreme conditions: Examples for possible energy landscape 

applications 

 

The above extensions of the energy landscape picture that allow us to include 

pressure, external electric and magnetic fields, or currents, temperature, and chemical 

potentials, in a general fashion, can straightforwardly be employed when dealing with very 

large pressures, currents etc., as long as we do not destroy the constituents, i.e., the atoms, 

molecules, etc., of the system. Furthermore, these extensions of the energy landscape can also 

be employed in the study of molecules and clusters, or (quasi-)low-dimensional chemical 

systems, keeping in mind that for such small systems, the continuum approximation most 

likely will no longer be applicable, and therefore the influence of the electric and magnetic 

fields, etc., always needs to be accounted for on the atomic level as part of the Hamiltonian. 

However, there are a number of extreme situations, where an energy landscape 

representation of the solid via a small periodic cell is not sensible. We have seen this in the 

case of large mechanical loads, where a major effect, in practice, will be the macroscopic 

deformation of the solid, which cannot be captured in the periodic cell model of the solid 

without moving to cells of macroscopic size. Furthermore, we realize that in such situations 

the system will often be out of equilibrium as far as temperature, stress, or field distribution, 

or composition are concerned. If possible, we would want to establish a steady-state situation, 

as we did in the case of currents, where the amount of, e.g., energy deposited inside the 

system is balanced by the outflow of, e.g., heat through the surface of the system. Once this 

kind of stationary state has been reached, we can treat the system as exhibiting a steady-state 

behavior, but possibly requiring a modeling of the energy landscape on the continuum level 

instead of only the atomic level, in order to incorporate the non-homogeneous ways energy or 

particles are inserted/injected into the system.  

We also note, that for strong interactions with the environment, non-negligible 

changes in the composition will frequently occur. In certain situations, we can assume that the 

system is in equilibrium with the environment in form of a reservoir of atoms, which can be 

included in the cost function in terms of a chemical potential. However, in many instances, 

the chemical potential by itself is not sufficient for modeling the effect of the environment; 

thus, the actual interface needs to be included in the configuration space and the energy 

landscape. 

In this section, we consider a couple of important cases of extreme conditions, and 

investigate, to what extent energy landscape concepts can still apply and be useful. 

Furthermore, we present a number of examples of energy landscape studies for bulk-like 

materials in extreme conditions. However, one should note, that only very few dedicated 

studies of such energy landscapes have been published. Thus, for most of the examples we 

only indicate how the concepts mentioned above would be applicable in practice, or that such 

systems might be suitable for analysis with the help of the extended energy landscapes 

presented above. 

 

 

4.1. High-pressure structure prediction 

 

The most clear-cut examples of energy landscapes for extreme conditions are the 

enthalpy landscapes in chemical systems at high pressures. Usually, these are investigated 

with the goal of identifying possible high-pressure modifications as might be found in a 

planetary interior or might be of interest for technological applications. Quite commonly, 

these landscape studies assist experimentalists in characterizing the structure of such newly 

synthesized modifications. The reason for the latter application is the fact that in many cases 
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only powder diffractograms of moderate quality are available from the experiment, making it 

very difficult to deduce the crystal structure of the new polymorph only from experimental 

data. For that reason, one often calls this work structure solution in contrast to structure 

prediction, because some experimental information such as, e.g., cell parameters, or a number 

of formula units per periodic unit cell are known from the experiment - even just knowing that 

a compound with a certain composition and density exists tends to be of help in setting and 

tuning the parameters of the global exploration algorithm.
52

  

Twenty years ago, examples of early successful structure predictions of high-pressure 

phases based on global enthalpy landscape explorations at a variety of pressures were the 

alkali metal sulfides M2S (M = Li, Na, K, Rb, Cs). At the time, these theoretical explorations 

were performed in parallel with experimental high-pressure investigations of the compounds 

Li2S, Na2S and K2S, where the theoretical[57,58] and experimental[125-127] results were 

published at essentially the same time. The experiments and the global searches found the 

same high-pressure structures in these systems, confirming the validity of the energy 

landscape approach in the prediction of high-pressure phases. Nearly ten years later, finally 

the experiments for Rb2S [128] and Cs2S [129] were successful, where also the originally 

predicted structures[58] were found. 

At the same time, a similar confirmation of originally theoretically predicted high-

pressure phases occurred in the sodium nitride (Na3N) system. Here, theoretical predictions 

based on global energy landscape explorations had suggested that a metastable compound of 

this composition should be capable of existence, with several possible candidate structures 

being suggested in the M3N family of compounds (M = alkali metals),[130,131,57] e.g., the 

Li3P, Li3N or the ReO3 structure type. The reason for suggesting several feasible candidates 

was two-fold: For one, the fact that the expected compound would only be metastable against 

decomposition into sodium metal and nitrogen gas made it impossible to select one of the 

local minima as the thermodynamic "winner" since the modification obtained in the 

experiment would greatly depend on the synthesis route. Furthermore, the precise energy 

ranking of these structures depended on the choice of DFT functional where the lack of 

experimental information made it impossible to guarantee the "correct" choice of functional. 

However, the global searches combined with the ab initio calculations allowed us to predict a 

sequence of high-pressure phase transitions - independent of the choice of functional -, from 

the ReO3-type over the Li3N- and Li3P types to the Li3Bi type. Several years after the 

successful synthesis of Na3N in the ReO3 structure type,[132] these high-pressure structures 

were successfully obtained,[133] validating the earlier predictions.
53

 

Since these early studies, high-pressure structure prediction and structure solution 

using global energy landscape exploration methods has grown into a veritable industry,[134-

151] employing a variety of landscape exploration algorithms, with many reviews available 

[49-51]. However, only rarely one finds attempts to go beyond the search for local minima 

and to identify, e.g., enthalpy barriers on the landscape that separate the possible structure 

candidates represented by local minima, such as was done for several of the earth alkaline 

oxides.[53] An example for such studies of how the enthalpy landscape and its barrier 

structure, and also the free enthalpy landscape change with pressure / temperature are the 

investigations of SrO [53,52] for pressures ranging from -16 GPa to +160 GPa. Fig. 6 shows a 

free energy landscape for two different pressures by combining the Gibbs free energies with a 

tree graph depicting the energy barriers between the different locally ergodic regions.  

 

                                                 
52

 However, since structure prediction sounds more exciting, and one often technically employs a structure 

prediction algorithm, some authors ignore the direct or indirect contributions of the experiment to the shaping of 

the global search they perform, and call their work "structure prediction" with the implication of an unbiased 

non-guided search in a completely unknown chemical system. 
53

 In the experiment, an additional intermediary phase exhibiting the YF3 structure type was observed. 
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Figure 6: Free energy landscape of SrO for two different pressures and ten different 

temperatures (free energy in the harmonic approximation); note that only the potential energy 

barriers are shown (energy difference between black and white circles), and not the full 

generalized barriers, in order to avoid cluttering the picture.[52] Left: 0 GPa; Right: 16 GPa. 

Note that the NaCl- and the CsCl-type structures are the ground state for all temperatures at 

pressures of 0 GPa and 16 GPa, respectively. Modifications shown: 1 = sphalerite; 2 = -

BeO; 3 = wurtzite; 4 = 5-5-structure; 5 = NaCl; 5' = rhombohedrally distorted NaCl; 6 = 

CsCl; 7 = NiAs; 8 = NbS; 9 = TiP; 10 = II-SrO; 11 = I-SrO. Fig. adapted from ref. [52]. 

 

 

In this context, one should note that for multinary systems, studying only the enthalpy 

landscape of the compound of interest is not sufficient, because decomposition into, e.g., 

binary compounds can take place as a function of pressure. An interesting example is the case 

of the hypothetical alkali metal orthocarbonates M4(CO4) - M = alkali metal -, whose possible 

modifications were studied as a function of pressure.[56] Several of the orthocarbonates were 

predicted to be stable at high pressures, but they are expected to decompose into the 

corresponding oxides M2O and carbonates M2(CO3) at standard pressure. To compute the 

transition pressures below which the decompositions will occur for the various 

orthocarbonates, or conversely, above which the orthocarbonate would be stable, required the 

analysis of the enthalpy landscapes of the alkaline oxides [60] and alkali metal carbonates 

[152]. 

 

4.2 Very high temperatures 

 

As we have discussed in section 3.2, for non-zero temperatures, we need to switch 

from energy to free-energy landscapes, where we analyze the system on various time scales 

regarding the existence of locally ergodic regions, and the evolution to thermodynamic 

equilibrium. But at very high temperatures, we can sample pretty much the full configuration 

space of the landscape, including not only atom configurations associated with crystalline 

solids but also configurations belonging to the gaseous and the liquid phases. As a 
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consequence, we need to use large periodic cells or very large clusters as approximations to 

the full macroscopic system with 𝑂(𝑁𝐴𝑣) atoms.
54

  

Thus, the usual picture of a landscape dominated by many well-defined locally ergodic 

regions that are stable over a large range of observation times and/or at least marginally 

ergodic regions, might no longer be suitable. On time scales shorter than the global 

equilibration time, i.e., until the material has completely reached the liquid/gaseous state, the 

probability flows are dominated by entropic barriers and less so by energy barriers - unless we 

are dealing with situations where "ultra-high temperature" also includes temperatures below 

the evaporation, and even below the melting temperature.  

We comment here on two special situations, starting with the case 𝑇𝑔𝑎𝑠 > 𝑇 > 𝑇𝑚𝑒𝑙𝑡. 

Here, a MC or MD simulation based exploration of the landscape would encounter only 

intermittently stable regions on the landscape.[153] This is somewhat analogous to a glass 

transition-like behavior but on much shorter time scales where local clustering of atoms, 

similar to the behavior of cage models of liquids,[154] is relevant on these very short time 

scales. Similar to glasses, only marginally ergodic regions are present instead of locally 

ergodic regions, until the global equilibrium of the melt phase has been reached. Quite 

generally, individual local minima become irrelevant, and even whole minima basins may not 

be very important on typical observational time scales. Energy landscapes of such systems 

have been studied for a long time.[155,156] 

Similarly, energy landscapes are of great importance for the second case, 𝑇 < 𝑇𝑚𝑒𝑙𝑡. 

Here, glass formers are of particular interest, especially for temperatures near the glass 

transition temperature, 𝑇 ≲ 𝑇𝑔𝑙𝑎𝑠𝑠(≈ 2/3 𝑇𝑚𝑒𝑙𝑡). In this case, we are in a temperature range, 

where the onset of aging phenomena and a widespread marginal ergodicity of nested regions 

on the energy landscape are central to our understanding of the dynamics of the chemical 

system on the landscape.[46,157] For such systems, more or less random network structures 

or random atom packings dominate the landscape and crystalline modifications are difficult to 

reach. Just as with research in the liquid state, energy landscapes of amorphous and glassy 

materials have been common subjects of study,[158,159] and great efforts have been devoted 

to the analysis of the similarities and differences between liquids and glasses.  

On the other hand, for predominantly crystalline systems that do not easily form 

amorphous phases, we frequently find transformations to high-temperature crystalline 

modifications associated with a single minimum, or directly a transition to the melt. In this 

case, standard crystal structure prediction via global exploration of the energy landscape will 

yield candidates for (metastable) high-temperature modifications.[42,43,45,48] Alternatively, 

the central elements on the energy landscape relevant at high temperatures are often multi-

minima basins that include various defect structures, and multiple symmetry-related stable 

regions, etc., instead of individual crystal structure minima. As long as the energies of these 

minima are very similar, they can jointly contribute to the so-called configurational entropy 

that provides thermodynamic stability to high-temperature phases, such as glasses, high-

temperature structures with partly mobile (rotations and/or translations) complex anions, solid 

solution phases, or combinations thereof. Studying such systems and predicting their phases is 

considerably more involved than the simple search for local minima representing standard 

crystalline modifications, however.[160,59] 

 

 

 

                                                 
54

 For practical purposes, we might want to study ultrahigh temperatures only in the presence of high pressures to 

avoid evaporation of the material. Clearly, without high pressures, the liquid or even the gaseous state constitutes 

the dominant locally ergodic region, and since all the other regions are massively suppressed for most 

experimental times scales if they exist as locally ergodic regions at all (like a superheated solid, for example), 

this locally ergodic region essentially constitutes the only set of configurations that are of interest. 
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4.3 Spin-glass systems with magnetic fields 

 

An important class of complex energy landscapes is encountered in the study of spin 

systems and, in particular, spin glasses.[161] Here, a more or less random interaction among 

neighboring spins leads to frustration and a multitude of local minima with nearly the same 

energy in contrast to the well-developed global minimum of a spin system with, e.g., 

ferromagnetic interactions. Such systems exhibit highly complex multi-minima landscapes 

with aging behavior already in zero external magnetic fields,[162] and their energy 

landscapes have been studied in great detail for a long time[66,67,163] using a variety of 

exploration algorithms. For example, it was found that the local densities of states, and also 

the local densities of local minima, exhibited approximately exponential growth in the low-

energy region of the landscape, and tree graph representations of their equilibration as a 

function of time - so-called equilibration or free-energy trees[63] - were obtained.[67] We 

note, that for many physical and non-physical problems, spin glasses have served as 

prototypical complex systems and test-beds of both new algorithms and new concepts. 

Thus, it is no surprise that the application of magnetic fields has been an important 

tool in learning more about the properties of such systems.[164-167] For example, using a 

three-dimensional Edwards-Anderson spin-glass model on a cubic lattice, the ground states of 

this system have been determined as a function of the magnetic field.[165] Not surprisingly, 

the high degeneracy of the ground state is eliminated already for small magnetic fields, and 

the spin-glass phase does not survive, and the system starts behaving like a paramagnet. 

However, if one employs an energy function of the mean-field type that can be represented by 

a highly dilute spin glass, there remain distinct large regions exhibiting spin-glass behavior 

even for finite non-zero magnetic field up to some maximum critical field. 

 

 

4.4 Phase transitions in a temperature gradient 

 

Concerning the study of energy landscapes for systems exhibiting a macroscopic 

temperature gradient, there do not appear to exist typical standard landscape explorations. 

However, MD simulations of such systems have been performed yielding well-developed 

temperature gradients in a steady state of constant heat flow through the system.[107,168] 

Furthermore, phase separation in thin films has been studied using the master-equation 

approach[169] on an Ising-spin model description of a binary mixture,[170] and phase-field 

simulations have been performed regarding the effect of a temperature gradient on the 

interface structure in diffusion couples.[171] Thus, global energy landscape studies should 

clearly be quite promising for systems with thermal gradients, especially considering the large 

number of experimental investigations, which have studied the effect of temperature gradients 

on phase transitions and phase separations. These range from phase equilibria such as in the 

UO2-PuO2 system,[172] phase separation in polymer solutions,[173,174] phase and 

morphological changes in, e.g., diamond films,[175] to phase transitions in, e.g., ferro-electric 

crystals.[176] Of course, here not only temperature gradients play a role, but also applied 

stresses, e.g., due to the substrates onto which the film is deposited, or external pressures for 

bulk materials can be important. We note that an inverse application of the phase transition 

due to thermal gradients, and the concurrent heat flows in the system, is the use of 

combinations of two phase change materials to block the flow of heat in one direction, thus 

creating a thermal rectifier, analogous to an electric diode.[177] 

A well-known classic application of the combination of high pressure and temperature 

gradients is the formation of minerals inside the mantle of the Earth.[178,179] This has 

actually motivated a large part of the body of work mentioned above in the context of high-

pressure structure prediction and structure solution via energy landscape methods mentioned 
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in section 4.1, although no landscapes incorporating thermal flows appear to have been 

employed up to now. 

 

 

4.5 Energy landscape with applied electric currents 

 

An important class of steady-state energy landscapes is that, where we encounter 

phases, which are stabilized by the applied electric currents. While there do not appear to 

exist global investigations of such energy landscapes, instances observed in the experiment 

should serve as a motivation to perform such landscape studies in suitable systems where 

theoretical calculations are feasible. An example are the current-stabilized electronic phases in 

Ca2RuO4,[180] where the current induces a semi-metallic state without any significant heating 

because in the experiment a sufficient amount of cooling was provided.[106] Since the two 

phases - the equilibrium and the steady-state non-equilibrium one - exhibit slightly different 

crystal structures, the transition between the phases as a function of current would be present 

on the steady-state energy landscape of atom configurations. One should note that even 

without applied currents, Ca2RuO4 switches from an antiferromagnetic Mott insulator to a 

(2D) ferromagnetic metal,[181] and even becomes superconducting[182], under application 

of pressure, and, furthermore, it exhibits a metal-insulator transition[183] as a function of 

temperature.  

Such phases based on the electronic degrees of freedom are not always easily treatable 

in an energy landscape picture, due to the difficulty in setting up a suitable state space and 

moveclass for the system. However, recent work on orbital ordering[184] shows that such 

electronic phase transitions can also exhibit nucleation-and-growth behavior typical for first-

order phase transitions, suggesting that complex landscape models that exhibit a multi-basin 

structure and a hierarchy of time scales for the equilibration among the microstates of the 

system, should be useful for modeling the state space of this quantum system and analyzing 

its dynamics. 

In the materials literature, there exist investigations of phase transitions in the presence 

of electric currents, where the transitions are associated with a rapid change in the electric 

conductivity.[105] These are concerned with the existence and growth of nuclei of the second 

phase, and thus the possible appearance of hysteresis, but fit nicely into the general formalism 

of steady-state energy landscapes. A related class of theoretical studies deals with the 

investigation of the use of electric currents in alloy processing,[103,104] which represents 

processes that occur on the steady-state energy landscape of alloy-forming systems in the 

presence of substantial electric currents.  

 

 

4.6 High levels of particle and/or electromagnetic radiation  

 

In the case of electromagnetic radiation, we deposit energy into the system, leading to 

two effects, in general: The first one is an overall heating of the system, once the deposited 

energy is transformed into vibrations and distributed throughout the material. The steady-state 

equilibrium state would correspond to the system being at a certain (high) average 

temperature, possibly with a more or less complex distribution of regions at different 

temperatures, depending on where the absorption happens,  such that a thermal flow takes 

place on top of the average temperature of the system, e.g., from the inside to the surface that 

is at the temperature of the environment; in the case of a vacuum, we would lose the heat 

energy via emission of black body radiation. The second effect is the direct absorption of 

radiation via electronic excitation of the local atoms or ions. While this may well lead to 

interesting phenomena such as luminescence, etc., this is not really a classical energy 
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landscape feature, since it does not deal with the arrangements of atoms in a molecule or a 

solid. An exception would be the breaking of bonds due to radiation - in this case, we can use 

the standard energy landscape of the (free) system, and implement the effect of the radiation 

as part of the moveclass, i.e., as a move corresponding to the breaking of the bond under 

discussion.
55

  

Of course, we can always extend the energy landscape treatment to include energy 

landscapes describing electronically excited states of the atoms in the material, as is 

frequently done in the study of molecular reactions.[185,186] In this fashion, absorption of 

radiation can be modeled and the coupling of electronic and ionic degrees of freedom can be 

studied, and the influence of electronic excitations on transition probabilities and flows and 

the corresponding generalized barriers can be investigated. Quite generally, while we usually 

discuss the energy landscape only as a function of atomic or ionic coordinates, one should 

keep this option of adding excited state energy landscapes in mind since they might be 

relevant for materials in contact with extreme environments. However, in such a case, one 

should also investigate, whether the Born-Oppenheimer approximation is still valid as far as 

states of the system and the energy function are concerned.
56

  

In the case of particle radiation, not only do we deposit energy into the system "via the 

surface", but also change the composition of the system if the particles are incorporated into 

the material.
57

 As discussed earlier in section 3.4, a change in composition can be 

accommodated in the energy landscape picture, in principle, but requires the introduction of 

an appropriate chemical potential that assigns a "price in energy" analogous to a chemical 

potential accounting for the addition of an atom (or other constituent) to the system - 

essentially, we would be taking the atom from a reservoir (and removing it to a reservoir, in 

principle, e.g. when an atom decays radioactively) whenever we change the composition of 

the system.  

In the way described above, we would be able to establish an extended energy 

function for a system in thermal equilibrium as far as its atom exchange with the environment 

is concerned. However, this would most likely not correspond to the physical/chemical 

situation of a piece of material being bombarded by energetic particles, since in that case there 

would be no "price to pay" because the environment, i.e., the ion beam, forces these 

molecules/atoms/ions into the material. Then, we can ignore this chemical potential (or set it 

to zero), and just assume that there exists a continuous stream of particles that are added to the 

system.
58

 But in that case, there is no steady-state, and we are dealing with a non-equilibrium 

situation. 

Note, that the time scales of the processes involved become of importance, depending 

on the features we want to investigate: Do we want to study the system on time scales where 

we can assume that a constant spatial distribution of foreign atoms in the material is 

established, and we are interested in short-term local equilibrium properties, or are we 

                                                 
55

 Essentially, we are crossing a high-energy barrier along a (usually) very narrow path, which would not be 

easily reached via thermal excitations of the system; the effect of the high-energy radiation on the molecule 

corresponds to avoiding a large entropic barrier by a well-focused injection of energy into a narrow group of 

degrees of freedom, i.e., the ones that need to be activated in order to, e.g., split the molecule into two pieces. 
56

 For example, the ground state energy landscape (as function of atom positions) might correspond to a 

superconducting state instead of the metal or insulator obtained as the ground state from the simple DFT or HF 

based calculation in the Born-Oppenheimer approximation. 
57

 If we deposit (or have incorporated) radioactive material inside the system, we generate not only heat in the 

bulk of the material but also He-atoms from the 𝛼-particles produced during the decay. 
58

 If we were to study the likelihood of the system to absorb these particles and later release them back into the 

environment, then the chemical potential controlling the emission of the molecules out of the material into the 

gas phase would become relevant. After a very long time, a steady-state process of the particle flow into and out 

of the material via an ongoing implantation and subsequent release of the particles might become established, 

with some constant (time) averaged distribution of the particles over the material. 
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interested in the time evolution of the system without it ever reaching some kind of local 

equilibrium? In the former case, we can deal with it in analogy to the temperature gradient 

situation, where we split the system into slices or regions of different compositions, and 

analyze the energy landscapes of each such slice individually. In the latter case, we need to 

modify the energy landscape approach with respect to the boundary conditions. We now deal 

with a fast evolving landscape compared to, e.g., the equilibration with respect to various 

thermodynamic boundary conditions, 𝑡𝑣𝑎𝑟 ≪ 𝜏𝑒𝑞
(𝑇)

, 𝜏𝑒𝑞
(𝜇)

, for which concepts like global - and 

even local - ergodicity and equilibration are most likely not applicable. Instead, we must 

define probability flows on a landscape that varies with time, such that we can address 

questions that are of relevance in such a situation: limits on stability of (formerly) locally 

ergodic regions under changing external conditions such as structural changes due to 

changing composition, size dependence of locally equilibrated regions, etc. Here, we need to 

employ the approaches discussed in section 3.5 for time-dependent energy landscapes.  

 

 

4.7 Corrosive environments  

 

In general, corrosion processes are a special case of chemical reactions occurring at 

the surface or interfaces such as grain boundaries of a material. We can surely study the 

mechanisms of various local reactions on the atomic level, e.g., oxidation of (individual) 

atoms belonging to a metal surface, using energy landscapes restricted to the few atoms and 

molecules involved in this reaction. As mentioned earlier, such energy landscape studies are 

rather common.  

However, once we go beyond such individual local processes that essentially take 

place in equilibrium, we are confronted by a non-equilibrium situation, which is, furthermore, 

complicated by a spatially inhomogeneous evolution of the surface structure. Thus, this is an 

example of a system out of equilibrium on large time scales while exhibiting local equilibrium 

on the time scale of individual reaction processes. Unless we focus on small regions and short 

time scales only - where we can assume constant thermodynamic conditions and a constant 

overall atomic composition -, we are again dealing with a situation, where standard landscape 

ideas do not apply, and we have to look towards the approaches suggested for time-dependent 

energy landscapes.  

For slow corrosion, we could probably use time-slices, i.e., consider the landscape 

spatially varying in composition and boundary conditions but constant in time otherwise, and 

analyze corresponding quasi-stable slices/regions, perhaps with a large (periodic) simulation 

cell, analogous to the case of nucleation and growth phenomena. Again, we would want to 

introduce either particle reservoirs or chemical potentials, in order to deal with the changing 

composition of the chemical system.  

Of course, we can imagine that we continually remove, e.g., the few atom layers of 

rust once they have been formed, thus establishing a kind of steady-state for a sub-system of 

interest, i.e., at the interface between the material and the corroding environment. But quite 

generally, the interesting issues of corrosion and its mechanisms are usually the time-

evolution, stability, and non-equilibrium aspects involved in these processes, and not a true 

steady-state situation.  

 

 

4.8 Prediction and analysis of synthesis routes 

 

Energy landscapes in the presence of external fields or currents, or an environment in 

general, would be expected to play an important role in describing the atomistic behavior of 

chemical systems during various processes involved in chemical synthesis. The reason is that 
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the energy landscape of the "pure" system that contains only the atoms belonging to the final 

product, is often much too limited for representing the actual synthesis, for a number of 

reasons: For one, unless the synthesis takes place essentially spontaneously from the gas 

phase or by phase transformation, additional atoms, e.g., in the educts or in the solvent or in 

the substrate, must be present to facilitate the synthesis. Furthermore, in many cases, we need 

to steer the synthesis, e.g., by applying le Chatelier's law via pressure variation, and thus we 

clearly move within the family of enthalpy landscapes of the system at a variety of pressures. 

Similarly, the presence of external fields in some fashion represents our ability to, e.g., 

polarize molecules or individual bonds, which reduces or raises energy barriers on the 

landscape that favor the desired outcome of the synthesis. 

A classic example of an implicit use of energy landscapes for guiding a synthesis is 

the so-called reverse synthesis in organic chemistry,[187,188] because the individual reaction 

steps can often be modeled and analyzed theoretically with the help of appropriate energy 

landscapes for the atoms and molecules involved in the step under consideration. This kind of 

kinetic control of the chemical reactions by the organic chemist is based on the "intuitive" yet 

systematic [189] visualization of these reaction step energy landscapes. In practice, most 

theoretical studies of such energy landscapes start with known chemical reactions, and devote 

their efforts to understanding in-depth the processes occurring during such a synthesis step or 

sequence of steps.[190,191] But conversely, one could as well analyze many hypothetical 

reactions via their corresponding energy landscapes, before turning to the experiment for 

validation and implementation. Analogous to the optimal control built into the study of 

thermodynamics in finite time, one could then envision the design of synthesis routes in an 

optimal fashion by combining a whole library of models for specific synthesis processes 

derived from detailed analyses of the corresponding energy landscapes.[192] 

 

 

4.9 Computational alchemy and finite-time thermodynamics 

 

Another important application of energy landscapes under extreme conditions is the 

computation of free energy differences between compounds via the smooth change of the 

energy function, sometimes called computational alchemy.[114-117] Here, the "extreme" 

aspect is the change in the underlying energy function of the system, while we use 

thermodynamic integration methods[193-196] to compute the free energy difference along the 

"path" connecting the two compounds of interest. This approach to compute free energy 

differences is based on the laws of thermodynamics, where the change in the energy function 

results in work being done on / by the system. If we can stay as close as possible to 

thermodynamic equilibrium along the path, the total amount of work corresponds to the free 

energy difference between the two compounds. In the case of a realization via simulations, 

this corresponds to running an ensemble of walkers that are equilibrated in a locally ergodic 

region while the underlying energy landscape slowly changes (c.f. Fig. 5a). Thus, the formal 

change in the Hamiltonian of the system can be visualized in analogy to a Hamiltonian that 

depends on time, resulting in a time-dependent energy landscape, with all the consequences 

for, e.g., the time scales involved in switching between the two different chemical systems. 

Besides the question of optimally controlling the path between the two energy 

landscapes, i.e., how to distribute the amount of change per step, for a given number of 

allowed changes in the energy function[118,197] - a problem belonging to the realm of finite-

time thermodynamics[87] -, a major complication is that we must perform this transformation 

of the energy landscapes fast enough such that the walkers still remain inside the given locally 

ergodic region all along the path. For simple systems, e.g., when moving from NaCl in the 

rocksalt structure to KCl in the rocksalt structure, via a smooth change in the ionic radius 

from r(Na) to r(K), this is most likely assured. But we clearly will face problems, if the 
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transformation is supposed to be from MgO in the rocksalt structure to BaO in the cesium 

chloride structure, or if it involves metastable structures with short escape times: in that case, 

we either must confront the possibility that some of the walkers will leave the locally ergodic 

region during the process (c.f. Fig. 5b), or accept that the resulting free energy difference will 

most likely be rather inaccurate. 

 

 

4.10 Time crystals 

 

In analogy to the usual periodicity in space exhibited by crystalline compounds, it has 

been suggested[198,199] that one should define "time crystals", which exhibit periodicity in 

time as far as their structure is concerned. We note that this does not refer to individual 

vibrational excitations of the system, but to ground state analogues of a structural crystal with 

respect to periodicity in time. However, it has been proven that such a breaking of time-

translation symmetry is not possible in a standard equilibrium system.[200] Nevertheless, 

such a time-crystalline state is possible, if the system is out of equilibrium, e.g., in a steady-

state situation, where periodic forces are applied in some fashion, or periodically varying 

currents flow through the material. Clearly, this constitutes an example of a time-varying 

energy landscape. In particular, we are talking about the special case mentioned in subsection 

3.6.5.iv), where we observe the system at periodic intervals, with a period that is an integer 

multiple of the time period of the driving force, 𝑇𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑛𝑇𝑑𝑟𝑖𝑣𝑖𝑛𝑔 , 𝑛 > 1. Usually, it is 

assumed that the induced periodicity is due to external fields or flows that add/extract energy 

to/from the chemical system with a certain period.  

While we do not have our usual locally ergodic regions on the landscape, we can 

identify time-repeating configurations of the relevant degrees of freedom, which are stable for 

essentially infinite numbers of periods, and exhibit ground-state like properties such as no net-

heating of the material (no entropy production) due to the periodically applied forces. 

Furthermore, to distinguish the "time crystals" from many phenomena observed in 

periodically driven systems,[201] one usually demands that the period of the time crystal be 

larger than the one of the driving force, i.e., 𝑛 > 1. So far, example systems tend to be very 

small and focus on some spin degree of freedom in, e.g., 1D chains of trapped ions[202] or 

nitrogen vacancy centers[203], but more complex systems might be feasible where positional 

degrees of freedom exhibit non-trivial periodicity in time, creating a time-crystalline ground 

state. 

 

 

4.11 Quark-Gluon Plasma 

 

Finally, a perhaps a bit outlandish example of an energy landscape at extreme 

conditions would be the one associated with the phase diagram of quantum 

chromodynamics,[204,205] where a so-called quark-gluon plasma phase is expected. Here, 

the temperatures and pressures or densities are gigantic compared to anything we encounter in 

chemical systems. But even in this extreme case, we would expect an energy landscape 

approach to be feasible once we have decided on the proper state space and moveclass of the 

system. The landscape would be one that includes variation in the number of particles, i.e., we 

would need to introduce a chemical potential, and the state space would consist of quarks and 

gluon fields discretized on a four-dimensional (3 space and 1 time dimension) grid, and the 

Hamiltonian that provides the energy function would have to be replaced by the QCD 

Lagrangian.[206,207] This lattice field theory allows us to explore the energy landscape; 

however, the open question is the choice of moveclass, since for this we need a reasonable 

model for the time-evolution operation. Besides temperature and density, people have studied 
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the effect of, e.g., magnetic fields,[204] yielding - in the limit of time-scales where the system 

is globally ergodic - a magnetic field-temperature-density phase diagram, which covers both 

the state of the early universe, neutron stars, and the "normal" world around us on Earth at the 

present time. But there are open questions regarding the existence of metastable phases in the 

quark-gluon plasma; such phases might be accessible when employing energy landscape 

exploration methods to this system. 
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5. Conclusions and outlook 

 

In this essay, the energy landscapes of chemical systems in contact with the 

environment have been discussed, with a focus on extreme conditions. Ideally, the atoms or 

relevant degrees of freedom that constitute the interface between the devices representing the 

environment and the (bulk) material of interest would be included in an all-encompassing 

landscape. Since this is usually impossible for macroscopic systems, we introduce 

minimalistic extensions of the (potential) energy landscape of an isolated system by 

parametrizing the environment in terms of, possibly time-dependent, macroscopic fields and 

fluxes, such as mechanical stresses, electromagnetic fields, electric, particle and thermal 

currents, other thermodynamic parameters such as the temperature, or particle reservoirs and 

the associated chemical potentials. 

Here, we are guided by the way such forces and fluxes are added to the potential 

energy in thermodynamics. A critical technical issue one confronts in this process is the 

computation of material properties - needed for the implementation of the desired 

(minimalistic) parametrization - that are usually defined on the continuum level, such as 

conductivities and permeabilities, which must nevertheless be associated with individual 

microstates of the configuration space of the chemical system. While complicating the matter, 

this is the price one often has to pay when representing the environment in the cost function 

by terms that involve only simple field variables. The appropriate choice of such 

representative variables will depend on the specific chemical system and the kind of extreme 

conditions it is exposed to, i.e., on the environment it interacts with. Since these external 

parameters will frequently show spatial and/or time dependences, it might often be necessary 

to explore the landscape for many small versions of the system - still perhaps containing 

thousands of atoms -, on small enough time scales such that the parameters can be taken as 

constant, to obtain information about the feasible (meta)stable states or phases of the system. 

These piecemeal landscapes can then be joined together to describe the macroscopic system 

and its time evolution. In particular, the characteristic time scales on which the energy 

landscape varies, are going to be in competition with the inherent time scales of each of the 

time-independent energy landscapes, such as the equilibration and escape times of locally 

ergodic regions and the time scales of the probability flows on the landscape, for given fixed 

values of the environment parameters. 

However, this competition will allow us to control the dynamics of the chemical 

system, providing a way to obtain optimal synthesis routes for difficult to synthesize 

compounds or enable phase transformations in a given system in a controlled fashion. We 

also note that the "extreme conditions" are only special cases of the general interaction with 

the environment, as long as the forces we apply do not "destroy" the system, e.g., by turning it 

into a plasma. Similarly, extreme conditions can also be realized in the landscape of small or 

(quasi-)low-dimensional systems, such as molecules, clusters or nanotubes. However, in these 

instances, the use of continuum level parameters, such as conductivities or permeabilities, to 

simplify the extended energy landscape, will be problematic or impossible. Instead, we would 

need to include the fields explicitly in the Hamiltonian when solving the Schrödinger or Dirac 

equation of the system. 

This points to one of the major open questions in the field of energy landscapes of 

chemical systems: the construction of an energy landscape for systems, whose state space is 

fully quantum mechanical in nature, e.g., when the Born-Oppenheimer approximation is no 

longer valid and thus the space of atom arrangements is no longer sufficient as the 

configuration space, or where the landscape of interest is primarily a function of the electronic 

degrees of freedom and only secondarily depends on the atom arrangement. While there are 

many phenomenological models described by quantum mechanical Hamiltonians for specific 

systems or properties, there does not always exist a natural choice of microstates for the state 
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space of the landscape - after all, any linear combination of eigenstates of the Hamiltonian 

with the same energy, or even with different energies, can be employed as a quantum 

mechanical basis for the system. Similarly, the choice of moveclass is less obvious than in the 

case of classical atom arrangements, since the interaction with the environment can couple 

many microstates that seem to be far away or are very different, with a non-negligible 

probability. Furthermore, the interference of probability amplitudes describing the time 

evolution can lead to strange connectivities among the states of the landscape when defining 

the moveclass. This touches on the famous measurement problem in quantum mechanics, 

which we encounter, e.g., if we want to enforce a periodic reduction to a classical state, in 

order to recapture our familiar energy landscape picture.[208,209] 

While some answers to these questions may be found in the field of quantum 

thermodynamics [210,211] and, in particular, in the use of quantum master equations [212-

214] for the description of dynamics of coarse-grained models of the energy landscape at the 

quantum level, properly addressing these issues may require new energy landscape concepts, 

whose development might be driven by the study of systems under extreme conditions. But 

for the moment, there are enough chemical systems under extreme conditions, ranging from 

high pressures and temperatures over strong electric and magnetic fields and electric currents, 

to large thermal gradients and heat flows, all of which might vary with time, where the use of 

the generalized "classical" energy or cost functions discussed in this work can provide deep 

insights into the properties and dynamics of the materials. 
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