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ABSTRACT

The growing interest in safety problems has led physicists to try to increase their knowiedge of
.he neutron leakage phenomenon, both by calculation and by experiment. The flux calculation in a
heterogeneous assembly is frequently performed by collision prabability method. On the cantrary.
neu'ron leakage is czlculated for a flux-weighted homogenized assembly, which is a good
approximation for a non-voided assembly (PWR in normal conditions). In a LOCA situation, the
ass2mbly may contain void zones, and this imodel for leakage calculation may became insufficient. We
propase here a new theoretical model, taking inta account the effect of heterogeneity of the assembly
on neutrsn leakage, and which was implemented as TIBERE procedure in the multigroup transport
assembly code APOLLO-2. One of the advantages of this new model is to allow a perfectly consistent
definition of cell reaction and cell leakage rates used in the equivalence procedure. As well as this
theoretical work was made, an experimental program concerning this phenomenon was performed as a
part of EPICURE experiment. Comparisons of experimental and calculational results point out better
agreement of the new model with the measurements.

INTRODUCTION

The increasing interest in safety requirements of nuclear reactors had led physicists to devote
more attention to certain problems which could reasonably be considered of secondary importance in
normal operation situations, at least in the case of PWRs. In particular, the effect of lattice heterogeneity
on neutron leakages seems to have been somewhat neglected in PWR assembly calculations; indeed, a
very fine description of the muitigroup flux chart can be obtained in the present, but leakages are
calculated for a flux-weighted homogenized assembly, which is a rough representation of actual
leakages. This approximation can lead to an important underestimation of leakages in LOCA situations,
where voids or fogs appear in an assembly. Therefore, a work has been undertaken at the CEA in order
to improve the knowiedge of this effect: an experimental programme EPICURE', was performed at
Cadarache, a part of which was devoted to the void effect; at the same time the elaboration of a new
model for leakage calculation2, TIBERE, was carried out at Saclay, and implemented in the assembly
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code? APOLLO-2. The comparison between experiment and calculation is given in this paper. This new
maodel allows to take into account the effect of the heterogeneity of the assembly on leakages, which
was not possible in the previous procedure.

THE APOLLO-2 CODE

The APOLLO-2 code (as well as APOLLO# first calculates the fine multigroup flux chart in the
volume V, of a heterogeneous perfectly reflected assembly (equivalent to an infinite lattice of
assemblies), for instance by the "2D-xy exact" collision probability module MARSYASS. The flux is the
solution of the muitigroup integral transport equation :

exp [-79 r, 7)) A -
P = | e — D506
=
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After discretization in calculational zones jE€ V,, this equation becomes, gajg being the average flux
in zone j (total cross section Ejg) :

A ,

g 9 2 92 9.9 g

ViLie = Vi P Lo ¥
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The P? are the first flight collision probabilities from zone i to zone j in group g. Once obtained the
muitigroup flux chart qojg. one may define, by flux weighting, a homogenized medium "equivalent” to the
assembly; for any reaction 3 :

’ég _ <Z3 ¢9>,
3 <@¥>,

This medium, homogeneous and perfectly reflected (or homogeneous and infinite) is not critical;
in order to make it critical, macroscopic leakages are to be introduced, in such a way that the angular
fluxis :

YOF.0) =¥8 [ exp (iBr)

where B is the bucking vector. Introducing this fiux in the homogeneous and infinite transport equation,
the critical buckling B‘g and the leakage coefficient DS of the medium are determined, using the linearly
anisotropic scattering approximation (homogeneous B, procedure). This critical buckling is not the
fundamental buckling of the actual heterogeneous assembly. Therefore a second heterogeneous
calculation is performed, introducing leakages as an additional absorotion cross-section D9 Bg. A new
flux chart is obtained, and the procedure is continued by iterations until convergence is attained. The
drawback of this procedure cames from the fact that leakages are calculated for a homogenized
assembly, not for the actual assembly; the leakage cross-section should indeed depend on point r.
which is not the case here.
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s new : In an actual reactor, the assembly is not perfectly reflacted. The full calculation of a reactor being,
hich i at least at the present, almost impossible, an equivalence procedure is necessary. In each assembly, a .

heterogeneous macroregion M, for instance a cell, is replaced by an equivalent homogeneous medium;
moreover, instead of treating the problem in the fine group g representation, the cross-sections are

1 condensed into a small number of macrogroups G. These celi-condensed cross-sections, used in the 1
core calculation, will be determined in each assembly by a transport-diffusion (or transport-transport)
equivalence procedure. This procedure requires the knowledge of the reaction rate Taa in the
n the . macroregion M and in the macrogroup G; for the reaction 8 : «
e of ‘ .
G g G G
is the TMJ=<E?,¢ > M <>py= Z ........ d3r M
gEGISVy
But the leakage rates TE, are defined, not at the scale of a macroregion M, but at the scale of the
whole assembly A :
G 2 G
- Tai=<D9B, 99 > 4
Using reaction and leakage rates, average cross-sections and leakage coefficient can be defined
G G
-G Ty -6 _ Ta
e flux M = G A =T G
<@ > Bi< v >,
! '
It has been shown®7 that this simple weighting does not satisfie the equivalence of reaction rates
and leakage rate between the ‘reference" transport calculation and the "macrocalcutation”. The
equivalence is only possible for certain homogenized parameters defined as :
the _G G -G ~G_ G6=G
o the Sma = # Ems Da=# Da
‘\\ where 4G, the &~H factor, is obtained by a non-linear procedure. This procedure contains certain ’ .
‘\~ inconsistency due to the fact that the equivalent cross-sections T, are defined at the scale of the \\\
N
» macroregion M, while the leakage coefficient DS’ is defined only at the scale of the assembly A. N
itical; =
gular HETEROGENEOUS B, FORMALISM
The transport equation for the angular flux ¥9 (7. f1}is :
H¥ = PV
tion, with. £9 being the total cross section (diagonal multigroup matrix):
early
P 2
t the HW:Q‘V‘I’Q"EQ‘I’Q )
eous -~ ) . . . . N b
and. in the linearly anisotropic scattering approximation :
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{ where. {} being the k-component of the unit vector 0 i
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The heterogeneous 8, formalism (which is itself an approximation, since in an assembly,

surrounded by assemblies of different types, flux transients will appear near the boundary) lies on the
following hypothesis® S :

¥IF.0) = exp (ié-;) Y9 . 0)

where B is the buckling vector. Substituting this expression in Eq.2 we obtain

(H+iBa)y =Py @)

In an infinite medium of identical assemblies, 9 .o has the periodicity of the assembly (assumed to
be symmetrical). This angular fiux ¢9 is complex® :

RN (= xy.2

where 2 (7. @) and Y3 (. 0) depend on vector B. At the scale of the assembly, the angle-integrated
flux g:g (r) corresponding to ¢g . Q) is symmetrical with respect to direction k, while the angle-
integrated fiux ¢3 () corresponding to .3 (. 0) is anti-symmetrical with respect to direction k and
symmetrical with respect to directions k' = k (If the cross-sections are independent of the axial
directions k = z (2D - problem), qag. qafx and qaagy are independent of z and ¢, is identically zero). The
angular fluxes ¢g and ¢ agk may be chosen as solutions of the system:

HYg = T, 05 + Iy ZQI( sk - Z ZBI( By O Yar
k koK
4

~

H'&ak = ¥o Pak * I:1 Z L8 Jame + O ¢s
K
with

1 _ 1 .
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4 4x

The symbols I, and I, are muitigroup transfer matrices, and the fluxes and currents are
multigroup vectors. The solution of such a heterogeneous B, system would be possible and was
already carried out in some particular geometries'0. But it would be certainly very time-consuming in
complex assemblies. Moreover we must remind that the heterogeneous B, procedure is itself an
approximation.

]

\ "\
. N

.\\\\\

-~



A

biy,
the

@

to

gle-
nd
ial
he

are
as

an

-

\ ‘:\

N S

A SIMPLIFIED HETEROGENEQUS B, PROCEDURE: TIBERE

Therefore we propose a simplified form of the heterogeneous B, procedure which, due to some
approximations, requires only mathematical tools existing in APOLLO-2, or very similar tools.
Antisymmetry considerations, rigorous for k = 2, approximate for k = x, y, allow to cancel jg, from the
first equation of Eq.4 , ¢, from the second one, as well as cross-terms k' = k. This approximation,
consisting in neglecting the influence of antisymmetrical terms, corresponds to neglecting the angular
correlation terms. These terms, neglected in the first streaming theories'!, have been shown1213 to be
very important in large cells such as in graphite or heavy water reactors, but can be reasonably
considered as negligible' in assemblies such as for PWR. Equation 4 becomes then :

HYg = £o 05 ZB& O Yk
k

(5)
HYa = £y Qare + U Vs

Moreover let us admit for the moment that, on the RHS of the second Equation 5 :
Ve F.a#e3 ) {isotropic approximation)

and that, on the RHS of the first Equation 5 :
Y3 e3 i3 ©) 9 (anti-isotropic approximation)

Equation 5 becomes now :

A

H¢s =Lo¥s-3 ZBE QE Jakk
K

(6)
Ha = S Qe + X Vs

In the particular case of a homogeneous medium H, Equation 6 reduces (in multigroup matrix
notation of course). to :

[c7H = sHeH . B2 (conservation relation)
1
LA 3 o e (Fick's relation)

The second relation is only approximate; the exact relation (given by the homogeneous B,
calculation) would be :

W 1. B
AR T - )

where, £M9 depending of course on the group g :
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We propose to perform the same operation on the second heterogeneous Equation 6 by the
approximate correction :

B
H¥ak = A (FR) (B Qo + Bu@s) @

where I is obtained by simple flux-weighting, and where B2 = 285 .The system of Equation & (the
k

second equation being replaced by £q.7) may be written in the integral form :

exp [-79 (r, r)]
¢gm=f & [2):9 P et -3 Zeznzlakml
Va

®)
B exp [-79 (r, ] . ,
stk ) = A (5 f O —m— 2 [ 25T 0% @) - o2
Va g

The discretization of Equation 8 gives :

VI eg = 2 Vi [PI)Z 7:o| %eg ZBE Pk faikil
X
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[
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The P? are the classical first flight collision probabilities in group g, already used previously :

\"? exp [-79 (r, )]

g .= 3 3y —— - T.3

P,J— v, Vdr Vdr a7 A2 R=|r-r}
1

The PUF’k are the directional collision probabilities2- '3 in direction k :

. g? ,, SPLT G [

- =L 3 ——— a2 R

P‘,k- | asr asr a7 R2 .Snk 0= T
\/ i ir-rl

In a x-y problem, the Pg and Pu « are both integrals of Bickley functions. The multigroup flux and
current charts are obtained. m each calculational zone, by solving the system Eq.9 by an nterative
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scheme. In practice, instead of calculating separately j,,, and jayy TIBERE calculates their average
value j,, (radial).

Remark

-

The classical APOLLO-2 procedure presented previously is equivalent to solving, by an iteration
scheme, the system of non-linear equations :

-a

oo lPEN o 0
AR= | ® I 25 @ et @ - sl 36
Va g ‘os
(10)
1
aLhe

1 f
B-AGm | 2 ETCI o)
o

where the quantities with index H are calculated with the homogenized cross-sections :

o fv I3 () 8 (7) o

];A ©3 (F) &

The ratio /"19 / "9 appearing in the RHS of the first £q.10 is the leakage coefficient DI of the
homogenized assembly. On the contrary, £Eq.8 of the TIBERE model is linear.

The TIBERE model allows to establish a completely consistent equivalence procedure, treating
the reaction "leakages" exactly as the other reactions (let us note that the idea of defining a cell leakage
coefficient was proposed in Ref.15,17). If Y8(rf. Q) is the complex flux solution of Eq.3, a reference
reaction rate can be defined for each reaction g, in the macroregion M and in the macrogroupe G :

G
Tis = BVl = <Egey>y

The antisymmetrical part Y, of Y cancels identically for any “"physical* reaction 3. The
expression of the reference reaction rate is the same as in the classical equivalence procedure (Eq.1).
Let us define now reference reaction rates wak for the "volumetric leakage" reactions in direction k, in
the macroregion M and in the macrogroupe G (this rate corresponds to the cross-section iB, 0,
appearing in Eq.3).

TMG.k = [iBy nk\/’]a = B2 <iakk>a

Here the contribution of the symmaetrical part v/, of Y cancels identically. The knowledge of
reference rates T,Vﬁ, and TN(ISk allows to define average cross-sections and |leakage coefficients : ) 1
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But we have seen that this simple weighting did not satisfy the equivalence of reaction and
leakage rates between the reference calculation and the "macrocalculation® (diffusion or transport
calculation). The equivalence is only possible for the following homogenized cross-sections and
leakage coefficients, where u is the SPH factor :

~G G ~G ~G G =6
Ema~™# Zmgs DMk =# Dmx
NUMERICAL CALCULATIONS

First we performed calculations of typical PWR, 17x17 cells, perfectly reflected assemblies. For
the non-voided assembly the infinite multiplication factor is Kint = 1.28347. The critical buckling
obtained by the classical APOLLO-2 procedure is B2 = 48.338 x 10-*cm-2. Assuring the axial buckling
B2 = 16.000 x 10%cm 2, TIBERE procedure gives the critical radial buckling B2 = 32.038 x 10%cm2, i.e.
the total buckling B2 = 48.038 x 10%cm=2 A simPIe caiculation showed that the classical method would
overestimate the reactivity by approximately & (E) = 138 x 105, Further on, from the central part (7 x 7
cells) of the same assembly, water was substituted by void. The infinite muitiplication factor is now K
= 1.27061. The critical buckling obtained by the classical APOLLO-2 procedure is B2 = 37.043 x 104
cm2. Assuming the same axial buckling as in the previous case (B2 = 16.000 x 10“%cm-2), the TIBERE
procedure gives the critical radial buckling BZ = 19.469 x 10"%cm'2, i.e. the total buckling B2 = 35.469 x
10%cm2. The classical method overestimates the reactivity by 935 x 10-5. Perhaps more interesting than
reactivities are the charts of the flux ¢, and of the currents j,,, (radial) and j,,, (axial} given by TIBERE in
the fast and thermal groups. In the fast group (Fig. 1) the flux « is practically uniform, but thjgr::urrents
ha}/zzan important peak in the voided zone, in such a way that the leakage coefficients D, = @ and D,
= == have also an important peak in this zone; on the contrary the leakage coefficient resulting from
the dlassical procedure would be uniform in the assembly, since in this procedure j, is proportional to
@s. In the thermal group (Fig. 2), the flux ¢, obtained by TIBERE is strongly depressed in the voided
zone. due to the fact that there exists absorption in the fuel, but practically no thermal sources since
there is no water; anyway the currents have still an important peak in this zone in such a way that the
leakage coefficients D, = 2L and D, = % have also an important peak; hereagain the classical

S o . . . N
procedure would lead to a unitorm leakage coefficient, since the ratio f is uniform.
£l

COMPARISON BETWEEN EPICURE EXPERIMENTAL RESULTS AND CALCULATIONS

A part of the EPICURE experimental programme! is devoted to the investigation of two
dimensional void effects both in UO2 and MOX lattices. The results of the experimental campaign in a
U02 regular lattice are available, while the measurements in the MOX cores are still to be done. The aim
of these experiments is to measure the perturbation caused by the progressive removal of the water
volume in a central zone of a regular core, in terms of reactivity and pinwise fission rate distributions,
and to check the validity of our calculational schemes for such configurations. First, a reference core
made of a regular lattice of UO2 (3.7 % 235U enriched) pins has been constructed. This reference core
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has been carefully characterised using buckiing measurements derived from a number of different
reaction rate distributions, resulting in an uncertainty of 150 mN (24) on the corresponding Keff. At the
center of this core, a 7 x 7 pins zone has been reserved for special geometrical changes. The three
configurations devoted to the void effect correspond to the gradual removal of the water from this
region by substituting with an equivalent volume of aluminium. The 30 % and 50 % void has been
obtained simply, by increasing the thickness of the standard aluminium overclad, the purpose of which
is to simulate the reduced water density under operating conditions (300 °C, 155b). The "100 % void*
has been simulated and corresponds to the case where the 7 x 7 pins region is replaced by a solid
block of aluminium containing 49 channels in which the UO2 pins are inserted. in each case, the
following measurements have been made; criticality has been obtained using a compensating boric
acid adjustment in the moderator, and pinwise fission rate distributions have been obtained from
integral gamma scanning on pins themselves. The complete region comprising the perturbed zone and
the surrounding region (extended until the asymptotic spectrum is recovered) has been investigated.
The approximate shape of the fission rate distributions for the four cases (0, 30, 50 and 100 % of void) is
illustrated in the Figure 3. One can observe that the depression of the fission rates in the central part
increases with the void percentage, but that these perturbations vanish rather quickly and that the
fundamental mode is recovered at a distance of approximately four pins from the voided-unvoided zone
interface. The perturbation on both edges of the core is due to the presence of a water reflector.

All calculations performed concern the complete (100 %) replacement of water by aluminium in
the voided zone. The radial buckling was determined by fitting on the experimental fundamental mode
in the non-voided case. Indeed the experimental results show that there exists, not too near the
boundaries of the reflector, the fundamental mode zone in which the spectrum index @yae/@hermal
does not depend on the space variable. This defines the flux extrapolated annulation point. [n the
voided case, one can observe, in the same way, the existence of a fundamental mode zone between
the voided zone and the reflector. Hence, our hypothesis will be that the flux extrapolated annulation
point is the same as in the non-voided case (in other terms, transients from voided zone and reflector
do not overiap). The extrapolation-point was defined as R = 34.15 cm. In order to be able to calculate
the reactor core by diffusion theory, we were obliged to define the square assembly (21 x 21 cells)
containing the zone where water was replaced by aluminium, in such a way that its boundary lies inside
the fundamental mode zone. In the reference calculation this assembly will be treated as perfectly
reflected. Reference transport cell reaction rates and leakage coefficients are defined, and, by a SPH
transport-diffusion equivalence, diffusion cross-sections and leakage coefficients are deduced. This
calculation is made both by classical and by TIBERE leakage calculation procedures of APOLLO-2
code. It is assumed that, in the diffusion calculation, diffusion coefficients are equal to leakage
coefficients. The whole core 2D diffusion calculation was carried out by the diffusion code CRONOS'S,
assuming that the cells situated around the assembly were homogenized by simple flux-weighting. First
we compared the reactivities of EPICURE in the voided case (aluminium), given by experiment, and by
the classical and TIBERE procedures. The voided experiment is critical for a certain concentration of
boron (383 p.p.m.). For the same concentraticn of boron, the reactivity obtained by CRONOS with the
classical leakage calculation is -948 x 105 while CRONOS with TIBERE gives -1165 x 105 This
decrease of reactivity (217.10'5) is due to the fact that TIBERE increases the leakages compared to the
classical procedure. The absolute error (~ -1000 x 10°5) between the experiment and the calculations is
due to the approximate modelling of the reactor, but this should not influence the difference between
these two types of calculations. The most interesting comparison concerns the fission rate distribution

in the EPICURE reactor. Here we present the relative discrepancy (EX—PE’X-%A—LC %) between the
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experiment and the classical leakage procedure (Fig. 4) and the TIBERE procedure (Fig. 5). The
normalization of the calculated chart is chosen in such a way that the relative discrepancy is zero in the
tenth cell of the diagonal, i.e. in the zone of the fundamental mode. We observe that the classical
leakage model (Fig. 4) underestimates the depression in the voided zone (~ 3 %), while TIBERE gives a
good agreement with experiment (the experimental error being within 1.5 %). This is due to the fact that,
compared to the uniform leakage coefficient resulting from the classical model, the TIBERE model
gives, in the voided zone, bigger leakage coefficients, and hence a bigger additional equivalent
absorption. In the vicinity of the boundary of voided an non-voided zones, a greater discrepancy with
respect to experiment appears; it could be explained by the fact that, in the collision probability
calculation, azimuthal dependence in each cell was not taken into account; this insufficiency can have a
particular effect in strong gradients zones. An interesting parameter is the ratio of maximum to minimum
fission rate of the reactor. This value is 2.447 for the experiment, 2.369 for the classical leakage
calculation (3.19 % relative error with respect to experiment) and 2.435 for the TIBERE calculation
(0.49 % relative error with respect to experiment). As extension we have also calculated the same
situation, but replacing aluminium by void. The decrease of reactwity between CRONOS with the
classical procedure and CRONOS with TIBERE is now 284.105 (instead of 217.10S for aluminium). As
far as the ratio of maximum to minimum fission rate is concerned, the classical procedure gives 2.257
and the TIBERE procedure 2.349; this shows that the relative discrepancy between these two
calculation procedures is 3.92 % in the void case (instead of 2.71 % in the case of aluminium). However,
the depression of fission rate is more important in the aluminium case, in sprite of the stronger
streaming effect in void; this is due mainly to the fact that the absorption in Al is not entirely negligible.
Then. in spite of its long m.f.p., Al cannot be considered exactly as void.

LEAKAGE COEFFICIENT CHARTS FOR VARIOUS TYPES OF VOIDED ASSEMBLIES

It seemed to us interesting to point out the difference between the ieakage coefficient charts
obtained by the procedures previously described. We present here the leakage coefficients of the
perfectly reflected assembly (21 x 21 cells) used in the calculations of the EPICURE experiment. First we
present the case where water is replaced by aluminium in the central zone (7 x 7 cells). Figs. 6 and 7
give. for the fast and the thermal group, the curves of the classical (D), axial (D,) and radial (D,) leakage
coefficients as functions of the abcissa along the halif diagonal of the assembly. These curves result
ium a two groups condensation of a 99 groups APOLLO-2 calculation of the currents j,,, and fluxes
¢, Oue to this spectrum consideration, the classical leakage coefficient D = ? is not absolutely
unifc.m (as it was before condensation), since the spectrum is space-dependent. On the contrary, the
directional leakage coefficients given by the TIBERE procedure, D, = akk  are strongly space-
dependent. due to the streaming in aluminium. The same calculation was Berformed by replacing
aluminium by void (Figs. 8 and 9); the same effect appears, but is more important for directional
coefficients (~ 30 to 50 %). For bigger voided zones (11 x 11, 15 x 15 cells), the effect is still greater.
Moreover, for this type of reflected assembly (21 x 21 cells), the ratio of the maximum (at the cell
corner) to minimum (at the center) fission rate of the assembly, for the voided zone of 7 x 7 cells,
calculated by the classical APOLLO-2 procedure is 2.627 and by the TIBERE procedure 2.823. The
same retio for the voided zone of 11 x 11 cells, calculated by the classical APOLLO-2 procedure is 3.736
and by the TIBERE procedure 4 044. The relative discrepancy between the classical and the TIBERE
procedure for the first case (7 x 7 voided cells} is 6.94 % and for the second one (11 x 11 voided cells)
762 %.
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CONCLUSION

The new theoretical method, presented in this paper, implemented in APOLLO-2 code as the
TIBERE procedure, allows to take into account, in 2D x-y fine group assembly calculations, the
influence of assembly heterogeneity on neutron leakage. This method, based on the heterogeneous B,
formalism, which assumes the existence of a fundamental mode, due to certain approximations, permits
to obtain the space dependent leakage coefficients. Moreover, this new method requires tools which
are very similar to those already existing in the APOLLO-2 code. In this way, it is, now, possible to define
leakage cross sections, as additional absorption cross sections, which have space and energy
dependence as well as all other cross sections. Hence, one obtains the new definition of the cell
leakage rates. In order to perform, further on, the whole core caiculation, one obtains, by means of the
redefined transport-transport or transport-diffusion equivalence procedure, the cell homogenized cross
sections where leakages are presented also as the cell homogenized leakage cross sections. The study
of this refined heterogeneous leakage treatment was undertaken because of the insufficiency of the
homogeneous leakage model. especially in cases when an assembly contains voided or almost voided
zones, so that the streaming effect may become important. Meanwhile, as the other part of the
improvement of knowledge of void effect, the series of experiments EPIZIURE was performed, where the
water was substituted, in the central part of reactor, by aluminium in order to simulate void. The fission
rate comparisons between the experimental results and the results of the whole reactor calculations
were accomplished, where leakages were calculated by the classical (homogeneous) procedure and by
the TIBERE (heterogeneous} procedure of APOLLO-2 code. They prove that the heterogeneous
treatment of leakages give results which lie within the experimental error. This is not the case with the
classical (homogeneous) leakage treatment. In other words, the classical leakage procedure
underestimates the depression in the zone with aluminium due to streaming. It was shown also, that this
effect was more exalted when the aluminium was replaced by void, and further on, much more exalted
when the proportion of void was greater. This new model could be used, of course, for PWRs with other
types of fuel (for example, MOX), and also for other types of reactors (for example: LMFBR’s control
assembly with or without sodium, HTGR).

The authors would like to express their gratitude to R. Sanchez, who heiped them to overcome
numerical difficulties in collision probability caiutations, and with whao they had fruitful discussions.
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