Serbian Ceramic Society Conference
ADVANCED CERAMICS AND APPLICATION

Organized by
Serbian Ceramic Society
&
Institute of Technical Sciences of SASA

PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35
May 10-11th, 2012, Belgrade, Serbia
S2.2

Ho$_2$O$_3$ Additive Effects on Microstructure and Dielectrical Properties of BaTiO$_3$ Ceramics

Vesna Paunović1, Vojislav V. Mitić1,2, Ljiljana Živković1, Miroslav Miljković3

1University of Niš, Faculty of Electronic Engineering, Aleksandra Medvedeva 14, Niš, Serbia,
2Institute of Technical Sciences of SASA, Belgrade, Serbia,
3University of Niš, Center for Electron Microscopy, Serbia

Doped BaTiO$_3$-ceramics is very interesting for its application as resistors with PTCR, multilayer ceramics capacitors, thermal sensors etc.

Ho doped BaTiO$_3$ ceramics, with different Ho$_2$O$_3$ content, ranging from 0.01 to 1.0 wt% Ho, were investigated regarding their microstructural and dielectric characteristics. The samples were prepared by the conventional solid state reaction and sintered at 1320°, 1350 °C and 1380° C in an air atmosphere for 4 hours.

The grain size and microstructure characteristics for various samples and their phase composition were carried out using a scanning electron microscope SEM equipped with EDS system. SEM analysis of Ho/BaTiO$_3$ doped ceramics showed that in samples doped with a low level of rare-earth ions, the grain size ranged from 10-40µm, while with the higher dopant concentration the abnormal grain growth is inhibited and the grain size ranged between 2-10µm.

Dielectric measurements were carried out as a function of temperature up to 180°C. The low doped samples sintered at 1380°C, display the high value of dielectric permittivity at room temperature, 2500 for 0.01Ho/BaTiO$_3$. A nearly flat permittivity-response was obtained in specimens with higher additive content. Using a modified Curie-Weiss low the Curie constant (C') and a critical exponent γ were calculated. The obtained values of γ pointed out the diffuse phase transformation in heavily doped BaTiO$_3$ samples.