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Herein we presented hydrolytic sol-gel synthesis and photoluminescent properties of Eu3+-doped Gd
2
Ti
2
O
7
pyrochlore

nanopowders. According to Gd
2
Ti
2
O
7
precursor gel thermal analysis a temperature of 840∘C is identified for the formation

of the crystalline pyrochlore phase. Obtained samples were systematically characterized by powder X-ray diffraction, scanning
and transmission electron microscopy, and photoluminescence spectroscopy. The powders consist of well-crystalline cubic
nanocrystallites of approximately 20 nm in size as evidenced from X-ray diffraction. The scanning and transmission electron
microscopy shows that investigated Eu3+-dopedGd

2
Ti
2
O
7
nanopowders consist of compact, dense aggregates composed entirely of

nanoparticles with variable both shape and dimension.The influence of Eu3+ ions concentration on the optical properties, namely,
photoluminescence emission anddecay time, ismeasured anddiscussed. Emission intensity as a function of Eu3+ ions concentration
shows that Gd

2
Ti
2
O
7
host can accept Eu3+ ions in concentrations up to 10 at.%. On the other hand, lifetime values are similar up to 3

at.% (∼2.7ms) and experience decrease at higher concentrations (2.4ms for 10 at.% Eu3+). Moreover, photoluminescent spectra and
lifetime values clearly revealed presence of structural defects in sol-gel derivedmaterials proposing photoluminescent spectroscopy
as a sensitive tool for monitoring structural changes in both steady state and lifetime domains.

1. Introduction

The insulating rare-earth titanate pyrochlore oxides
described by the general formula RE

2
Ti
2
O
7
(RE = Ln3+,

Sc3+, or Y3+) have the face-centered cubic crystal structure
with the space group Fd3m. In the structure RE3+ and Ti4+
ions occupy 16d and 16c sites, respectively, with the D

3d
symmetry. Due to the ability to accept rare-earth elements
in high concentrations, chemical stability, and the fact
that they do not show electronic conductivity at ordinary
temperatures, rare-earth titanate pyrochlores could be
proposed as a potential phosphor and laser host materials.
However, due to their unusual structural, magnetic, and
electrical conductivity properties most of the research in this
field is done on the structural trends [1], thermodynamic
and dynamic magnetic properties [2–4], disorders [5, 6], and
nonstoichiometry [7].

Many synthesis approaches for rare-earth pyrochlores
such as solid state [8–10], sol-gel [11, 12], molten salt [13],
hydrothermal [14], stearic acid method [15], and Pechini
process [16] have been developed. Among them sol-gel

method has been considered as a low cost approach for the
preparation of novel nanostructured materials. It is a wet-
chemical technique widely used in the fields of materials
science and engineering for the fabrication of materials
starting from a chemical solution—sol which acts as the
precursor for an integrated network of discrete particles—
gel. It refers broadly to the room temperature solution routes
and enables synthesis of materials with desirable hardness,
optical transparency, chemical durability, tailored porosity,
and thermal resistance.

In this paper, Eu3+-doped Gd
2
Ti
2
O
7
nanopowders with

different dopant concentrations (0.5; 1; 3; 5; 7; 10; and 15 at.%
with respect to Gd) were fabricated using sol-gel technique.
There are two reasons for using europium. Firstly, it provides
an intense red emission and therefore Gd

2
Ti
2
O
7
powders

are new red nanophosphors. Secondly, due to nondegen-
erated ground (7F

0
) and excited (5D

0
) states together with

nonoverlapping 2S+1LJ multiplets that give emission spectra
with clear dependence on the host material structure and site
symmetry, Eu3+ is well-known structural probe ion [17, 18].
In this way photoluminescent spectroscopy could be used
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as a structural probe technique. The thermal decomposition
behavior and proper sintering temperature of the Gd

2
Ti
2
O
7

samples are determined using thermogravimetric/differential
thermal analysis (TG-DTA). Fourier transform infrared spec-
troscopy (FTIR) is used to identify the changes taking place
within the precursor gel during drying and calcination.
Detailed structural and morphological characterization of
the nanocrystalline powders was performed using X-ray
diffraction (XRD), scanning (SEM), and transmission elec-
tronmicroscopy (TEM). Optical properties were determined
by photoluminescence (PL) excitation, emission, and life-
time measurements. The doping concentrations were sys-
tematically investigated in order to obtain the pure phase
pyrochlore structure, strongest photoluminescent intensity,
and the longest lifetime.

So far there is a lack in reports on photoluminescent
properties of rare-earth doped Gd

2
Ti
2
O
7
powders. To date,

photoluminescent properties of Eu3+-doped Gd
2
Ti
2
O
7
have

been investigated by others in thin film [19], core-shell [20],
and nanocomposite [21] form or codoped with V4+ ions in
powder form [11, 22, 23]. Our previous article reported pho-
toluminescent properties of Sm3+ and Eu3+-doped Gd

2
Ti
2
O
7

[16] obtained by mixed metal-citric acid synthesis and this
study is the continuation of our research on the rare-earth
doped Gd

2
Ti
2
O
7
powders. Moreover, aim of this report is

to introduce luminescent spectroscopy as a sensitive tool for
monitoring structural changes.

2. Materials and Methods

2.1. Synthesis of Gd
2
Ti
2
O
7
:Eu3+ Nanoparticles. To produce

undoped and Eu3+-doped pyrochlore Gd
2
Ti
2
O
7

in the
form of nanopowders the hydrolytic sol-gel route has been
adopted, starting from rare-earth nitrates and titanium(IV)-
isopropoxide. For the synthesis titanium(IV)-isopropoxide
(Alfa Aesar, 97%), water, ethanol, and nitric acid were
mixed in molar ratio of 1 : 3 : 20 : 0.08 [24]. In the first step,
stoichiometric quantities of Gd(NO

3
)

3
∗ 6H
2
O (Alfa Aesar,

99.9%) and Eu
2
O
3
(Alfa Aesar, 99.9%) were dissolved in

appropriate amount of water and HNO
3
. Then titanium(IV)-

isopropoxide was dissolved in ethanol under constant mag-
netic stirring and added to the rare-earth nitrates mixture.
For undoped sample only appropriate amount of Gd(NO

3
)
3

was used. Transparent gels were obtained within fewminutes
anddried at 70∘C for 5 h under atmospheric pressure. In order
to obtain pure phase Gd

2
Ti
2
O
7
nanoparticles the undoped

and Eu+3-doped dried gels were calcinated at 840∘C for 4
hours followed by natural furnace cooling to room tem-
perature. The calcination temperature is chosen according
to TG/DTA analysis, the results of which are presented
in Section 3.1. Finally, undoped Gd

2
Ti
2
O
7
and 7 Gd

2
Ti
2
O
7

samples doped with 𝑥 at.% Eu3+ (𝑥 = 0.5; 1; 3; 5; 7; 10; and 15
with respect to Gd3+) were synthesized.

2.2. Instruments and Measurements. TG/DTA analysis was
performed on the SETARAM SETSYS Evolution-1750 instru-
ment. The Gd

2
Ti
2
O
7
dried gel (∼10–15 mg) was heated

at 10∘Cmin−1 heating rate, in air atmosphere (air flow 16
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Figure 1: Thermogravimetry (TG, solid line) and differential ther-
mal analysis (DTA, dotted line) curves for undoped Gd

2
Ti
2
O
7
dried

gel (70∘C for 5 h).

mLmin−1), from 30 to 1000∘C. Fourier transmission infrared
(FTIR) measurements were carried out on the Thermo
Nicolet 380 FT-IR instrument, in a reflection mode with
a resolution of 4 cm−1. X-ray diffraction (XRD) measure-
ments were performed using Rigaku SmartLab diffractome-
ter. Diffraction data were recorded in a 2𝜃 range from 10∘ to
90∘, counting 0.7∘/minute in 0.02∘ steps. Relevant results of
structural analysis (unit cell parameter, crystal coherence size,
microstrain values, and data fit parameters) were obtained
using built-in package software. Microstructural characteri-
zationwas done using a JEOL JSM–6610LV scanning electron
microscope (SEM) with an acceleration voltage of 20 kV.
Microstructure at a local level was analyzed by transmission
electron microscopy (TEM) using JEOL-JEM 2100 LaB

6

operated at 200 kV.
Photoluminescence (PL) measurements were performed

under room temperature conditions. Measurements were
done on Fluorolog-3 Model FL3-221 spectrofluorometer sys-
tem (Horiba Jobin-Yvon), utilizing 450W Xenon lamp as
excitation source for emission measurements and Xenon-
Mercury pulsed lamp for lifetime measurements. TBX-04-
D PMT detector is used for both lifetime and steady state
acquisitions. The line intensities and positions of the mea-
sured spectra were calibrated with a standard mercury-argon
lamp. All photoluminescencemeasurements were performed
on pellets prepared from the powders under a load of 5 tons
and without any additives.

3. Results and Discussion

3.1. Thermal Analysis (TG/DTA). The Gd
2
Ti
2
O
7
gels pre-

pared with hydrolytic sol-gel route were of amorphous
nature and under appropriate sintering they transformed
to crystalline Gd

2
Ti
2
O
7
. Thermal analysis of dried gel was

performed in order to determine proper sintering tempera-
ture for the transformation to pyrochlore phase. Results of
TG/DTA analysis clarified the existence of three temperature
regions (see Figure 1). Between room temperature and 275∘C
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Table 1: Characteristic vibrational modes obtained from FTIR
measurements.

Functional group Region (cm−1) Comments
-OH stretching vibration 3600–3000 From water
Aliphatic C-H stretching
vibration 3000–2800 From isopropoxide

O-N=O asymmetrical
stretching ∼1650 From nitrates

Asymmetrical and
symmetrical CH3 deformation
vibrations

1450–1350 From isopropoxide

CH(CH3)2 skeletal vibrations 1170–880 From isopropoxide
N-O stretching vibrations ∼800 From nitrates

CO2 2400–2300 Inevitable in the
atmosphere

strong endothermic peak attributed to the vaporization of
adsorbed organic molecules occurs in the DTA curve. In the
same temperature range the TG curve shows amarkedweight
loss (∼30%). In the second temperature range between 275∘C
and 500∘C two endothermic peaks are indicated by DTA. At
the same time weight loss (∼20%) indicated by TG could be
related to the elimination of the residual organic compounds.
In the third region a DTA exothermic peak at ∼815∘C could
be attributed to the amorphous to crystalline transformation
of Gd

2
Ti
2
O
7
, while after 500∘C the mass remains constant.

According to these results calcination temperature of 840∘C
was chosen. Comparing with our previous results on rare-
earth doped Gd

2
Ti
2
O
7
obtained withmixedmetal-citric acid

synthesis (appropriate sintering temperature was ∼880∘C,
[16]) this temperature is somewhat lower. Additionally, more
structured shape of TG/DTA curves shows that thermal
behavior of sol-gel derived materials is more complex com-
pared to mixed metal-citric acid ones.

According to our previous study on the crystallization
of phosphor materials prepared by sol-gel method [25],
one should expect that materials crystallize in a two-step
process. In the primary crystallization stage nonconstant
radial growth rate is present, while in the second stage two-
dimensional crystal growth occurs.

3.2. Fourier Transform Infrared Spectroscopy (FTIR). Figure 2
presents the FTIR spectra of undoped Gd

2
Ti
2
O
7
gel, dried

gel, and powder obtained after calcination at 840∘C for 4
hours. Broad band with a maximum at ∼3310 cm−1 arises
from the stretching vibrations of OH− groups [26] and is
especially visible in the Gd

2
Ti
2
O
7
gel. Many peaks in the gel’s

and precursor’s spectra could be attributed to the organic and
nitrate presence (see Table 1, [26]). One can notice that after
heat treatment peaks from H

2
O, NO

3

− groups and organic
disappear completely. Due to formation of new lattice, the
main feature of the titanate pyrochlores, the strong band in
the range 600–400 cm−1 [27], is only visible after thermal
treatment at 840∘C.

3.3. X-Ray Diffraction (XRD). Gd
2
Ti
2
O
7
pyrochlore crystal-

lizes in the face-centered cubic lattice (space group Fd3m,
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Figure 2: FTIR spectra of undoped Gd
2
Ti
2
O
7
: (a) gel, (b) dried gel

at 70∘C for 5 h, and (c) powder obtained after calcination at 840∘C
for 4 h.

number 227) with the unit cell containing eight molecules
(𝑍 = 8) and four crystallographically nonequivalent sites
(Ti at 16c, Gd at 16d, O at 48f, and O󸀠 at 8b). In the studied
structure, Ti4+ and Gd3+ cations (and consequently rare-
earth dopants) are situated in a centrosymmetric site of D

3d
symmetry.

XRD patterns of undoped and seven Eu+3-doped
Gd
2
Ti
2
O
7
powders together with ICDD card number 01-

074-9640 are presented in Figures 3(a) and 3(b). No other
phase peaks or traces of impurities were detected up to 10 at.%
Eu3+ indicating that, up to this concentration, dopant Eu3+
ions have been effectively incorporated into the Gd

2
Ti
2
O
7

host lattice. However, at 15 at.% Eu3+, barely visible traces
of impurities are present. In order to investigate presence
of trace impurities in more detail diffractogram of 15 at.%
Eu3+-doped sample is recorded under longer acquisition
time and presented in Figure 4. Additional diffractions could
be assigned to the traces of Ti

5
O
9
(ICDD card number

01-075-1815) and Ti
6
O
11

(ICDD card number 01-085-1058).
According to the Ti–O phase diagram [28] large number of
oxides and suboxides, TiO

2
, Ti
6
O, Ti
3
O, Ti
2
O, TiO, Ti

2
O
3
,

and Ti
3
O
5
, as well as Magnelli phases Ti

𝑛
O
2𝑛−1

(4 < 𝑛 < 10),
could be present at 298K. However, for given stoichiometry,
besides TiO

2
, most probable is formation of Magnelli phase

impurities. Even though amounts of all constituting ions
are precisely calculated and weighted, presence of bigger in
size dopant Eu3+ in high concentration leads to structural
misbalance and formation of stoichiometrically close Ti

5
O
9

and Ti
6
O
11
impurity phases traces.

Compared to our previous results [16], one can conclude
that sol-gel route allows incorporation of Eu+3 ions into
Gd
2
Ti
2
O
7
host lattice in lower concentrations (up to 10 at.%)

compared with mixed metal-citric acid synthesis (up to
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Figure 3: XRD patterns of (a) undoped and Eu+3-doped Gd
2
Ti
2
O
7
powder samples (0.5–7 at.% Eu3+) and (b) 10 at.% and 15 at.% Eu3+-doped

Gd
2
Ti
2
O
7
powder samples. The diffraction peaks are indexed according to the presented ICDD card number 01-074-9640.
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Figure 4: XRD diffractogram of 15 at.% Eu3+-doped sample taken
under longer acquisition time. Traces of impurities could be denoted
by both Ti

5
O
9
(ICDD card number 01-075-1815) and Ti

6
O
11
(ICDD

card number 01-085-1058) Magnelli phases.

15 at.%). However, more detailed investigation (between the
range of 10 and 15 at.% Eu3+) is necessary to precisely deter-
mine the extent to which the Eu3+ ion can be accommodated
into sol-gel obtained Gd

2
Ti
2
O
7
pyrochlore matrix.

Relevant results of structural analysis (unit cell param-
eter, crystal coherence size, microstrain values, and data fit
parameters) are presented in Table 2.The starting parameters
for the structural analysis were taken according to [9]. Unit
cell parameter, 𝑎, increases with rare-earth doping due to

replacement of smaller Gd3+ (𝑟3+VI = 0.938 Å) with bigger in
size Eu3+ (𝑟3+VI = 0.947 Å) ion. The largest unit cell parameter
was found for the sample with the highest Eu3+ dopant con-
centration (10 at.%). Similar crystallite size of around 20 nm
found for all samples shows that dopant concentration does
not affect crystallite size. Data fit parameters, the regression
sum of relative errors (Rp), the regression sum of weighted
squared errors (Rwp), and the goodness of fit (GOF) are small
indicating a highly satisfactory reliability. Microstrain values
are low suggesting good ion ordering in the nanocrystals.

3.4. Scanning and Transmission Electron Microscopy (SEM/
TEM). A SEM study was conducted to investigate the sur-
face morphology of the powders and representative sample
images are given in Figures 5(a) and 5(b). The micrographs
show that representative 3 at.% Eu3+-doped Gd

2
Ti
2
O
7
con-

sists of compact, dense aggregates composed entirely of
nanoparticles. Microstructure at a local level investigated by
TEM (Figures 5(c) and 5(d)) revealed that sol-gel synthesis
produces powders with irregular both particles size and
shape.Thenanoparticles are organized in agglomerates, some
of which formed the bigger crystals. This was visible for
all Eu3+-dopant concentrations as well. The local crystal
structure was investigated with the selected area electron
diffraction technique (SAED) and one representative ring
electron diffraction pattern is presented as Figure 5(c) inset.
The presence of rings is the evidence of Gd

2
Ti
2
O
7
polycrys-

talline nature, while their grainy appearance is connected to
the fact that the constituent crystallites have a size of ∼20 nm.

3.5. Photoluminescence (PL). In Figure 6(a) excitation spec-
trum of representative Gd

2
Ti
2
O
7
:10 at.% Eu3+ sample with
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(a) (b)

(c) (d)

Figure 5: SEM image of 3 at.% Eu3+-doped Gd
2
Ti
2
O
7
nanopowder under (a) low (×10000) and (b) high magnification (×50000).The bright-

field TEM images show that (c) most particles have irregular particles size and shape and that (d) nanoparticles are organized in agglomerates,
some of which formed the bigger crystals. The SAED diffraction pattern of Gd

2
Ti
2
O
7
presented as an inset in Figure 5(c) shows good

crystallinity of the material.

Table 2: Selected structural parameters obtained from XRD measurements.

Gd2Ti2O7 𝑎 (Å) Crystallite size (nm) Microstrain (%) Rwp (%) Rp (%) GOF
0.5 at.% Eu3+ 10.1624(4) 17.9(3) 0.23(10) 3.02 2.42 1.0467
1 at.% Eu3+ 10.1692(6) 23.8(3) 0.04(8) 3.56 2.75 1.4959
3 at.% Eu3+ 10.1714(6) 26.4(3) 0.07(6) 3.76 2.89 1.5241
5 at.% Eu3+ 10.1722(4) 25.0(3) 0.12(8) 2.69 2.14 1.1209
7 at.% Eu3+ 10.1724(5) 24.7(2) 0.07(6) 2.79 2.21 1.1396
10 at.% Eu3+ 10.1731(6) 21.6(4) 0.05(10) 2.86 2.26 1.1435

marked transitions, measured in the spectral region between
325 and 560 nm at room temperature, is presented. Pho-
toluminescence emission spectra of samples with different
Eu3+ concentration are presented in Figure 6(b). Emission
intensity as a function of Eu3+ ions concentration (see inset
in Figure 6(b)) shows that emission increases with Eu3+
doping and that Gd

2
Ti
2
O
7
host can accept Eu3+ ions in

concentrations up to 10 at.% without concentration quench-
ing. Figures 6(c)-6(d) show more clearly emission spectra
of Gd

2
Ti
2
O
7
:10 at.% Eu3+ and 15 at.% Eu3+ samples recorded

at room temperature. Excitation into the 5L
6
level (𝜆ex =

393 nm) produces distinct luminescence bands in the visible
spectral region. Both spectra show five characteristic bands
placed around 579 nm, 589 nm, 612 nm, 652 nm, and 712 nm
associated with 5D

0
→

7F
𝐽
(𝐽 = 0, 1, 2, 3, 4) spin forbidden

f-f transitions, respectively. However, in the 10 at.% Eu3+
spectrum the most intense sharp orange-reddish line placed
around 589 nm (magnetic-dipole 5D

0
→

7F
1
transition) is

followed by quite broad red emission placed around 612 nm
(electric-dipole 5D

0
→

7F
2
transition). On the other hand,

in the 15 at.% Eu3+ sample spectrum this ratio is inverted. It is
generally acknowledged that when a rare-earth ion is situated
in a centrosymmetric site then, according to the Laporte rule,
only magnetic-dipole transitions are possible. According to
Tanner [29] when Eu3+ ion is placed in crystallographic site
of D
3d point symmetry (with a strict center of symmetry)

only doublet corresponding to 5D
0
→

7F
1
transition should

be visible. Therefore, presence of dominant sharp orange-
reddish 5D

0
→

7F
1
doublet in 10 at.% sample suggests a

crystalline environment of Eu3+ ions and their incorporation
into nanoparticles. On the other hand, observation of broad
forbidden 5D

0
→

7F
𝐽
(𝐽 = 0, 2, 3, 4) electric-dipole transi-

tions could be related to the distorted sites near nanoparticle’s
surface or other defects. Observed most intense 5D

0
→

7F
2
transition in 15 at.% sample clearly indicates presence

of additional defects in the structure. Even though XRD
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Figure 6: (a) Excitation spectrum (𝜆em = 589 nm) of representative Gd
2
Ti
2
O
7
:10 at.% Eu3+ sample with marked transitions recorded at room

temperature and (b) emission spectra of Gd
2
Ti
2
O
7
:𝑥 at.% Eu3+ (𝑥 = 0.5; 1; 3; 5; 7; 10) samples (𝜆exc = 393 nm) with dependence of the emission

intensity versus Eu3+ concentration as inset. All spectra were recorded at room temperature and under the same experimental conditions.
Photoluminescent emission spectra recorded in the spectral range 525–725 nm at room temperature of (c) Gd

2
Ti
2
O
7
:10 at.% Eu3+ and (d)

Gd
2
Ti
2
O
7
:15 at.% Eu3+ sample.

spectra showed hardly noticeable difference, photolumines-
cence spectroscopy clearly revealed presence of additional
impurities. This observation indicates that luminescence
spectroscopy is an effective method for investigating the
presence of defects and could be used as extremely sensitive
structural probe technique.

The emission decay curves of the 5D
0
emitting level

are obtained under excitation at 393 nm (𝜆em = 588 nm)
(see Figure 7(a)) and indicate a complex luminescence decay
process. As can be seen, all curves could be fitted with at
least two exponential functions. For this reason we found it
more appropriate to calculate an average lifetime using the
following equation [30]:

𝜏avg =
∫

∞

0
𝑡𝐼 (𝑡) 𝑑𝑡

∫

∞

0
𝐼 (𝑡) 𝑑𝑡

, (1)

where 𝐼(𝑡) represents the luminescence intensity at time 𝑡,
corrected for the background, and the integrals are evaluated
on the range 0 < 𝑡 < 𝑡

𝑚
, where 𝑡

𝑚
≫ 𝜏avg.

Figure 7(b) shows how the dopant concentration influ-
ences lifetime values. Up to 3 at.% Eu3+ values are similar
experiencing decrease at higher concentrations. Generally,
these lifetime values are almost two times shorter than
our previous results on the same material obtained by
mixed metal-citric acid method [16]. This clearly indicates
that sol-gel method produces materials with more defects
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Figure 7: (a) Luminescence decay curves of 5D
0
level (𝜆em = 588 nm, 𝜆ex = 393 nm) for Gd

2
Ti
2
O
7
:𝑥 at.% Eu3+ (𝑥 = 0.5; 1; 3; 5; 7; 10) samples

and (b) change of 5D
0
level lifetime with doping concentration.

in the structure and confirms that photoluminescent spec-
troscopy could be used as a sensitive tool for monitoring
structural changes in both steady state and lifetime domains.

4. Conclusion

Eu3+-doped Gd
2
Ti
2
O
7
samples produced via sol-gel synthe-

sis and annealed at 840∘C for 4 h were studied in order to
observe the dopant’s influence on the structural and optical
properties. XRD measurements revealed that up to 10 at.%
dopant Eu3+ ions have been effectively incorporated into the
Gd
2
Ti
2
O
7
host lattice while at higher dopant concentrations

barely visible traces of impurities are present. Microstructure
at a local level revealed that sol-gel synthesis produces
particles with well-defined crystallinity and irregular size and
shape, organized in agglomerates, some of which formed
the big crystals. The dependence of luminescence emission
intensity on Eu3+ concentration shows that the strongest
emission is found for sample containing 10 at.%. On the other
hand, with an increase in Eu3+ concentration the lifetime of
the 5D

0
level decreases from ∼2.8ms (for 1 at.% Eu3+) to ∼

2.4ms (for 10 at.% Eu3+). Correlation between structural and
photoluminescent properties reveals that photoluminescent
spectroscopy of rare-earths (e.g., Eu3+ ions) could be pro-
posed as an effective method for investigating the presence of
defects and structural changes in optically active materials.
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